Damage Detection of Steel-Concrete Composite Beam
More details
Hide details
Poznan University of Technology, Poznan, Poland
West Pomeranian University of Technology of Szczecin, Szczecin, Poland
Online publication date: 2019-01-03
Publication date: 2018-09-01
Civil and Environmental Engineering Reports 2018;28(3):30–49
The paper presents analysis results of steel-concrete composite beams, identification and attempts to detect damage introduced in a discrete model. Analysis of damage detection was conducted using DDL (Damage, Detection, Localization), our own original algorithm. Changes of dynamic and static parameters of the model were analysed in damage detection. Discrete wavelet transform was used for damage localization in the model. Prior to ultimate analysis, two-tier identification of discrete model parameters based on experimental data was made. In identification procedure, computational software (Python, Abaqus, Matlab) was connected in automated optimization loops. Results positively verified the original DDL algorithm for damage detection in steel-concrete composite beams, which enables further analysis using experimental data.
Uhl T.: Mechatronics In Diagnostics; Diagnostyka, 3(47), Publisher 2008, 143-152.
Rucka M.: Neuro-Wavelet damage detection technique in beam, plate andshell structures with experimental validation, Journal of Theoretical and Applied Mechanics 48, 3 (2010) 579-604.
Białasiewicz J. T.: Falki I aproksymacje; Wydawnictwo Naukowo-Techniczne, ISBN 83-204-2971-4, Warszawa, Publisher 2004.
Doebling S., Farrar, C., Prime, M., and Shevits, D.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review; Los Alamos National Laboratory, USA,1, Publisher 1996, 1–136.
Wilde, K.: Możliwości zastosowania systemów monitoringu technicznego w infrastrukturze elektroenergetycznej, Acta Energetica, 2 (2009) 107÷114.
Knitter-Piatkowska A., Garstecki A.: Wavelet transformation in damage identification by dynamic tests; PAMM 4,1, (2004) 404-405.
Knitter-Piątkowska A., Pozorski Z., Garstecki A.: Application of discrete wavelet transformation in damage detection. Part I: Static and dynamic experiments; Computer Assisted Mechanics and Engineering Sciences 13 (2006) 21-38.
Salawu, O.: Detection of structural damage through changes in frequency: a review. Engineering Structures, 19,9 (1997) 718–723.
Marcinowski J.: Detection of structural heterogeneities by the wavelet technique, International Journal of Applied Mechanics and Engineering. 12, 2 (2007) 487-495, ISSN: 1425-1655.
Chung-Jen Lu and Yu-Tsun Hsu.: Application of wavelet transform to structural damage detection; Department of Mechanical Engineering National Taiwan University Taipei, Taiwan, Republic of China, Publisher 2002.
Rucka M. Wilde K.: Damage location in beam and plate structures by wavelet analysis of experimentally determined mode shapes. Key Engineering Materials; 293-294 (2005) 313-320.
Ziopaja K., Pozorski Z. Garstecki A.: Application of discrete wavelet transformation in damage detection. Part II: Heat transfer experiments, Computer Assisted Mechanics and Engineering Sciences 13 (2006) 21-38.
Kucharczuk W., Labocha S.: Konstrukcje zespolone stalowo-betonowe budynków. Arkady, Warszawa, Publisher 2007.
Queiroz F.D., Vellasco P.C.G.S.: Nethercot D.A.: Finite element modelling of composite beams with full and partial shear connection. J. of Constructional Steel Research, 63, 4 (2007) 505–521.
Jankowiak I., Madaj A.: Analiza numeryczna wzmocnienia taśmami CFPR betonu rozciąganego stalowo-betonowej belki zespolonej; X Konferencja Naukowa Konstrukcje Zespolone, Zielona Góra (2014), 217-232.
Polus Ł., Szumigała M.: Analiza numeryczna nośności i sztywności belki zespolonej aluminiowo-betonowej; X Konferencja Naukowa Konstrukcje Zespolone, Zielona Góra (2014) 393-405.
Szewczyk P., Szumigała M.: Analiza numeryczna wzmacniania belki zespolonej; X Konferencja Naukowa Konstrukcje Zespolone, Zielona Góra (2014) 217-232.
Berczyński S., Wróblewski T.: Experimental Verification of Natural Vibration Models of Steel-concrete Composite beams. J. of Vibration and Control, 16 (2010) 2057-2081.
Oberkampf, W. L. Blottner F. G.: Issues in Computational Fluid Dynamics Code Verification and Validation, AIAA Journal, 36,5 (1998) 687-695.
Oberkampf, W. L., T. G. Trucano, and C. Hirsch.: Verification, Validation, and Predictive Capability, Applied Mechanics Reviews, (2004) 2003-3769.