ORIGINAL ARTICLE
Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building
 
More details
Hide details
1
Czestochowa University of Technology, Faculty of Civil Engineering, Dabrowskiego st 69, 42-201 Czestochowa, Poland
 
2
Czestochowa University of Technology, Częstochowa, Poland
 
 
Online publication date: 2018-03-01
 
 
Publication date: 2017-12-20
 
 
Civil and Environmental Engineering Reports 2017;27(4):43-53
 
KEYWORDS
ABSTRACT
The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab) and truss elements (reinforcement bars). The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.
 
REFERENCES (12)
1.
Ahn J.-K., Lee C.-H.: Fire behavior and resistance of partially encased and slim-floor composite beams, Journal of Constructional Steel Research, 129 (2017) 276-285.
 
2.
Budziak M., Grabowski T.: Failure Assessment of Steel-Concrete Composite Column Under Blast Loading, Engineering Transactions, 62, 1 (2014) 61-84.
 
3.
Chiorean C. G., Buru S. M.: Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action, Engineering Structures, 134 (2017) 74-106.
 
4.
Eurokod 4: Projektowanie zespolonych konstrukcji stalowo-betonowych. Część 1-1: Reguły ogólne i reguły dla budynków., PN-EN 1994-1-1.
 
5.
Henriques D., Gonçalves R., Camotim D.: GBT-based finite element to assess the buckling behaviour of steel-concrete composite beams, Thin-Walled Structures, 107 (2016) 207-220.
 
6.
Kucharczuk W., Labocha S.:, Efektywność rozwiązań konstrukcyjnych stropu w zależności od stopnia zespolenia płyty betonowej z belką stalową, Konstrukcje stalowe, 5, 124 (2013) 30-31.
 
7.
Liu X., Bradford M. A., Ataei A.: Flexural performance of innovative sustainable composite steel-concrete beams, Engineering Structures, 130 (2017) 282-296.
 
8.
Liu Y., Guo L., Qu B., Zhang S.: Experimental investigation on the flexural behavior of steel-concrete composite beams with U-shaped steel girders and angle connectors, Engineering Structures, 131 (2017) 492-502.
 
9.
Machelski C., Toczkiewicz R.: Effects of connection flexibility in steelconcrete composite beams due to live loads, Archives of Civil and Mechanical Engineering, 6, 1 (2006) 65-86.
 
10.
Machowski A., Murzewski J.: Szkielety stalowe budynków wielokondygnacyjnych, Kraków, Wydaw. Politechniki Krakowskiej im. Tadeusza Kościuszki 1988.
 
11.
Mashiri F. R., Mirza O., Canuto C., Lam D.: Post-fire Behaviour of Innovative Shear Connection for Steel-Concrete Composite Structures, Structures, 9 (2017) 147-156.
 
12.
Wróblewski T., Berczyński S., Abramowicz M.:, Estimation of the parameters of the discrete model of a steel-concrete composite beam, Archives of Civil and Mechanical Engineering, 13, 2 (2013) 209-219.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top