ORIGINAL ARTICLE
Modal Analysis of Steel-Concrete Composite Floor in the RFEM 6 Software
 
More details
Hide details
1
Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
 
 
Submission date: 2025-06-14
 
 
Final revision date: 2025-08-20
 
 
Acceptance date: 2025-09-09
 
 
Online publication date: 2025-09-15
 
 
Publication date: 2025-09-15
 
 
Corresponding author
Klaudia Pędziwiatr   

Department of Theory of Structures, West Pomeranian University of Technology in Szczecin, Faculty of Civil and Environmental Engineering, al. Piastów 17, 70-310, Szczecin, Poland
 
 
Civil and Environmental Engineering Reports 2025;35(4):61-80
 
KEYWORDS
TOPICS
ABSTRACT
Using FEA programs, the structure's modal analysis itself is not complicated. However, in the case of a steel-concrete composite floor, a difficulty arises in the composite behaviour representation. In typical FEA programs, it is not possible to directly insert the composite structure, so the components cooperation has to be represented by substitute methods. In this case, functions such as an orthotropic material, modelling the beams as ribs interacting with the surface (concrete slab) and the use of eccentricities are useful. Besides the modelling methods in RFEM 6, a modal analysis based on the example of a floor is presented. The results are shown and the floor is assessed according to the described guidelines and classification. Based on the fundamental frequency (6.81 Hz), modal mass (58888 kg) and damping (4%), a floor acceptance class C was identified, which is suitable for the assumed office use of the area.
REFERENCES (24)
1.
Kucharczuk, W and Labocha, S 2007. Konstrukcje zespolone stalowo-betonowe budynków [Steel-concrete composite building structures]. Warszawa: Arkady.
 
2.
PN-EN 1994-1-1 2008. Eurokod 4 - Projektowanie zespolonych konstrukcji stalowo-betonowych - Część 1-1: Reguły ogólne i reguły dla budynków [Eurocode 4 - Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings].
 
3.
Johnson, RP 2004. Composite Structures of Steel and Concrete: Beams, Slabs, Columns, and Frames for Buildings. Blackwell Publishing.
 
4.
Feldmann, M, Heinemeyer, Ch, Lukic, M, Caetano, E, Cunha, Á, Goldack, A, Keil, A, Schlaich, M, Hicks, S, Smith, A, Hechler, O, Obiala, R, Galanti, F and Waarts, P 2007. Human-induced vibration of steel structures (Hivoss). European Commission.
 
5.
HiVoSS 2007. Human Induced Vibration of Steel Structures - Background Document for Floor Vibrations. European Commission.
 
6.
HiVoSS 2007. Human induced Vibrations of Steel Structures - Vibration Design of Floors: Guideline. European Commission.
 
7.
Smith, AL, Hicks, SJ, Devine and PJ 2009. SCI Publication P354: Design of Floors for Vibration: A New Approach (Revised Edition). Ascot: The Steel Construction Institute.
 
8.
PN-EN 1990 2004. Eurokod - Podstawy projektowania konstrukcji [Eurocode – Basis of structural design].
 
9.
PN-EN 1991-1-1 2004. Eurokod 1: Oddziaływania na konstrukcje - Część 1-1: Oddziaływania ogólne - Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach [Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings].
 
10.
PN-EN 1991-1-4 2008. Eurokod 1: Oddziaływania na konstrukcje - Część 1-4: Oddziaływania ogólne - Oddziaływania wiatru [Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions].
 
11.
PN-EN 1993-1-1 2006. Eurokod 3 - Projektowanie konstrukcji stalowych - Część 1-1: Reguły ogólne i reguły dla budynków [Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings].
 
12.
Chmielewski, T and Zembaty, Z 1998. Podstawy dynamiki budowli [Fundamentals of structural dynamics]. Warszawa: Arkady.
 
13.
Dassault Systèmes. Abaqus/Explicit https://www.3ds.com/products/s.... Access: 25.08.2024.
 
14.
Abramowicz, M, Berczyński, S and Wróblewski, T 2020. Modelling and parameter identification of steel–concrete composite beams in 3D rigid finite element method. Archives of Civil and Mechanical Engineering 20 (103), 1-24. https://doi.org/10.1007/s43452....
 
15.
Wróblewski, T 2019. Zastosowanie metody sztywnych elementów skończonych do oceny charakterystyk dynamicznych płytowo-belkowych układów konstrukcyjnych [The use of the rigid finite element method to evaluate the dynamic characteristics of slab-and-beam structural systems]. Szczecin: Zachodniopomorski Uniwersytet Technologiczny w Szczecinie.
 
16.
ArcelorMittal, Design Guide for Floor Vibrations.
 
17.
Szewczyk, P 2024. Experimental and Numerical Study of Steel–Concrete Composite Beams Strengthened under Load. Materials, 17(18), 4510. https://doi.org/10.3390/ma1718....
 
18.
Szewczyk, P and Szumigała, M 2018. Static Equilibrium Paths of Steel-Concrete Composite Beam Strengthened Under Load. Civil and Environmental Engineering Reports 28(2), 101–111. https://doi.org/10.2478/ceer-2....
 
19.
Wen, C, Bradford, MA and Yang, G 2024. Long-term behaviour of stud connections in composite structures. Engineering Structures, 313, 118266. https://doi.org/10.1016/j.engs....
 
20.
Abramowicz, M, Berczyński, S and Wróblewski, T 2017. Parameter estimation of a discrete model of a reinforced concrete slab. Journal of Theoretical and Applied Mechanics (Poland), 55(2). https://doi.org/10.15632/jtam-....
 
21.
Ackermann, B Modeling Options for Composite Cross-Sections https://www.dlubal.com/en/supp.... Access: 5.11.2023.
 
22.
Popiel, A, Student, M and Rowiński, S 2017. Modelowanie belki zespolonej [Methods of modeling offsets based on composite beam example]. Builder 21 (12), 62-65.
 
23.
PN-EN ISO 13918. Spawanie – Kołki i pierścienie ceramiczne do zgrzewania łukowego kołków [Welding – Studs and ceramic ferrules for arc stud welding].
 
24.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top