ORIGINAL ARTICLE
The Study of Using Gis Tools in Sustainable Management of Solar Energy
 
More details
Hide details
1
University of Science and Technology, Bydgoszcz, Poland
 
 
Online publication date: 2018-07-10
 
 
Publication date: 2018-03-01
 
 
Civil and Environmental Engineering Reports 2018;28(1):26-39
 
KEYWORDS
ABSTRACT
Resource efficiency is the primary element of the European Union's ‘Europe 2020’ strategy for the economic growth. It aims at stimulating economic growth which will be smart, sustainable and inclusive. Proper land use is beneficial to the economic development and it contributes to the improvement of living conditions considering the principle of sustainable development. Geographical information systems are the perfect tools enabling effective spatial planning. GIS technology allows to carry out complex analysis, which enable a comprehensive environmental and urban assessment. Using GIS tools gives also a possibility to assess different variations of land use in the future. The article presents the results of the analyses carried out on the basis of DTM and DSM, which purpose was to assess the potential of solar energy of the selected area. It was shown the possibility of using the roof surface of old buildings in a chosen part of Bydgoszcz to install solar systems on them.
 
REFERENCES (14)
1.
Brito M.C., Gomes N., Santos T., Tenedorio J.A.: Photovoltaic potential in a Lisbon suburb using LiDAR data. Solar Energy, 86, (2012), 283-288.
 
2.
Choi Y., Rayl J., Tammineedi C., Brownson J. R. S.: PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas. Solar Energy, 85, (2011), 2924-2939.
 
3.
Chow A., Fung A. S., Songnian Li: GIS Modeling of Solar Neighborhood Potential at a Fine Spatiotemporal Resolution, Buildings, 4, (2014), 195-206.
 
4.
De Boeck L., Van Asch S., De Bruecker P., Audenaert A.: Comparison of support policies for residential photovoltaic systems in the major EU markets through investment profitability, Renewable Energy, 87, (2016), 42-53.
 
5.
Energy Roadmap 2050, Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions, COM(2011) 885, Brussels, 2011.
 
6.
Freitas S., Catita C., Redweik P., Brito M.C.: Modelling solar potential in the urban environment: State-of-the-art review, Renewable and Sustainable Energy Reviews 41, (2015), 915-931.
 
7.
Kopietz-Unger J.: Energetyczny audyt miejski - potrzeby, założenia i schemat, Przegląd budowlany, 12 (2011), 32-37.
 
8.
Mrówczyńska M., Wawer M.: Attempt to prepare a solar cadastre for the town of Zielona Góra, Journal of Civil Engineering, Environment and Architecture, XXXII, 62, 4 (2015), 321-333.
 
9.
Photovoltaic Geographical Information System (PVGIS), Joint Research Centre. Institute for Energy and Transport, (http://re.jrc.ec.europa.eu/pvg..., access 04.09.2017).
 
10.
Podręcznik dla uczestników szkoleń z wykorzystaniem produktów LIDAR, edit. P. Wężyk, ISOK., Główny Urząd Geodezji i Kartografii, Warszawa 2015.
 
11.
Redweik P., Catita C., Brito M.: Solar energy potential on roofs and facades in an urban landscape, Solar Energy 97, (2013), 332-341.
 
12.
Urząd Regulacji Energetyki, Odnawialne źródła energii, Potencjał krajowy OZE w liczbach (http://www.ure.gov.pl/, access 04.09.2017).
 
13.
Ustawa o odnawialnych źródłach energii z dnia 20 lutego 2015 roku, Dz. U., (2015), p. 478, 2365.
 
14.
Yearly sum of global irradiation on optimally-inclined surface in Poland, PVGIS, European Communities, (http://re.jrc.ec.europa.eu/pvg..., access 04.09.2017).
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top