The Risk of Damage to Reailway Infrastructure Due to Theft and Devastation
More details
Hide details
Faculty of Civil Engineering, Cracow University of Technology, Poland
These authors had equal contribution to this work
Submission date: 2023-09-28
Final revision date: 2023-12-10
Acceptance date: 2023-12-13
Online publication date: 2023-12-18
Publication date: 2023-12-18
Corresponding author
Filip Janowiec   

Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Cracow, Poland
Civil and Environmental Engineering Reports 2023;33(3):129-145
Theft and devastation of railway infrastructure are one of the most important factors that affect the safety of the railway transport system. In Poland, the railway transported 245.1 million passengers and 243.6 million tons of cargo in 2021, so it is extremely important to ensure the maximum possible safety standards. Theft and devastation of railway infrastructure contribute to significant material damage to railway network managers. The costs of rebuilding railway equipment are estimated at millions of zlotys every year. They also influence the proper functioning of railway traffic. Due to this phenomenon, there are delays of passenger and freight trains, the total of which amounted to over 100,000 minutes in 2021. Therefore, the effects of such hooligan acts also affect passengers and commercial customers of the railways. The article is an attempt to describe the impact of theft and devastation of railway infrastructure on its safety and the operation of railway lines in Poland. By analyzing the available statistical data and using the CSM method, as well as applying certain simplifications, it was possible to determine the approximate level of risk using techniques used in practice. Based on the adopted risk reference levels, a systematic reduction in both the probability of occurrence of negative phenomena and their consequences was observed.
Ashby, M and Bowers, K 2015. Concetrations of railway metal theft and the location of scrap-metal dealers. Applied Geography 63, 283-291.
Commission Implementing Regulation (EU) No 402/2013 of 30 April 2013 on the common safety mathod for risk evaluation and assessement and repealing Regulation (EC) No 352/2009.
D’Amore, P and Tedesco, A 2015. Technologies for the Implementation of a Security System on Rail Transportation Infrastructures. In: Setola, R, Sforza, A, Vittorini, V, Pragliola, C Railway Infrastructure Security. Springer Cham, 123-141.
Derse, O, and Göçmen, E 2021. Transportation mode choice using fault tree analysis and mathematical modeling approach. Journal of transportation safety & security 13(6), 642-660.
Directive (EU) 2016/797 of the European Parliament and of the council of 11 May 2016 on the interoperability of rail system within the European Union.
Fenton, N and Neil, M 2018. Risk assessment and decision analysis with Bayesian networks. Crc Press.
ISO 31010:2020-1 Risk management – Risk assessement techniques (PN-EN IEC 31010:2020-01 Zarządzanie ryzykiem – Techniki oceny ryzyka).
Jamshidi, A, Faghih-Roohi, S, Hajizadeh, S, Núñez, A, Babuska, R, Dollevoet, R, Li, Z and De Schutter, B 2017. A Big Data Analysis Approach for Rail Failure Risk Assessment. Risk Analysis 37, 1495-1507.
Kerzner, H 2003. Project management: a systems approach to planning, scheduling, and controlling. Hoboken: John Wiley & Sons.
Koks, EE, Rozenberg, J, Zorn, C et al. 2019. A global multi-hazard risk analysis of road and railway infrastructure assets. Nature Communications 10.
Leśniak, A and Janowiec, F 2018. Analysis of Contractor’s Selection Criteria in Railway Projects. Archives of Civil Engineering 64(3), 145-158.
Leśniak, A and Janowiec, F 2019. Risk Assessment of Additional Works in Railway Construction Investments Using the Bayes Network. Sustainability 11, 5388.
Leśniak, A and Janowiec, F 2022. Ocena ryzyka robót dodatkowych w budowie infrastruktury kolejowej [Risk assessment of additional works in the construction of railway infrastructure]. Materiały Budowlane 10, 68-70.
Lorenc, A, Kuźniar, M, Lerher, T, Szkoda, M 2020. Predicting the Probability of Cargo Theft for Individual Cases in Railway Transport. Tehnicki vjesnik 27(3), 773-780.
Michailiuk, B 2015. Innowacyjne rozwiązania w walce z kradzieżami I dewastacjami infrastruktury kolejowej [Innovative solutions in the fight against thefts and devastation of railway infrastructure]. In: Nyszk, W, Szeląg, K, Tymińska, I (ed) Aspekty logistyczne wykorzystania infrastruktury kolejowej. Warszawa: Akademia Obrony Narodowej, 117-136.
Mikulski, J et al. 2010. Ochrona antykradzieżowa sieci trakcyjnej [Anti-theft protection of traction power network]. Logistyka 6.
Mrówczyńska, M 2011. Neural networks and neuro-fuzzy systems applied to the analysis of selected problems of geodesy. Computer Assisted Mechanics and Engineering Sciences 18(3), 161-173.
Palin, E, et al. 2021. Implications of climate change for railway infrastructure. WIREs Climate Change 12.
Peng, Z, et al. 2016. Risk Assessement of Railway Transportation Systems using Timed Fault Trees. Quality and Reliability Engineering International 32, 181-194.
PN-ISO 31000:2018 Zarządzanie ryzykiem – Zasady i wytyczne [Risk management – rules and guidelines], 2018.
Robb, P, et al. 2015. ‘Solvability’ and Detection of Metal Theft on Railway Property. European Journal on Criminal Policy and Research 21, 463-484.
Rosiński, A 2012. Systemy monitoringu wizyjnego w transporcie kolejowym jako czynnik zwiększający bezpieczeństwo pasażerów [Video monitoring systems in rail transport as a factor increasing passenger safety]. Problemy Kolejnictwa – Zeszyt 156, 79-94.
Ruifang, M 2012. The Risk Assessement Method of Lighting Disaster on Railway Signal System. Procedia Engineering 43, 413-418.
Sidebottom, A et al. 2011. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft. Journal of Research in Crime and Delinquency 48(3), 396-418.
Skrzypczak, I and Zięba, J 2023. Risk analysis in quality assessment of ready-mixed concrete using fuzzy logic. Cement Wapno Beton 28(1), 26-39.
Skrzypczak, I, Kokoszka, W, Pytlowany, T and Radwański W 2020. Landslides and the Risk of Damage to Road Infrastructure on the Example of a Transport Node. In: Macioszek, E., Kang, N., Sierpiński, G. (eds) Nodes in Transport Networks – Research, Data Analysis and Modelling. TSTP 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham.
Sprawozdanie z funkcjonowania rynku transportu kolejowego w 2022 r. [Report on the functioning of the rail transport market in 2022]. Urząd Transportu Kolejowego. Warszawa 2023.
Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego 2017 [Report on the state of railway traffic safety 2017]. Urząd Transportu Kolejowego. Warszawa 2018.
Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego 2018 [Report on the state of railway traffic safety 2018]. Urząd Transportu Kolejowego. Warszawa 2019.
Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego 2019 [Report on the state of railway traffic safety 2019]. Urząd Transportu Kolejowego. Warszawa 2020.
Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego 2020 [Report on the state of railway traffic safety 2020]. Urząd Transportu Kolejowego. Warszawa 2021.
Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego 2021 [Report on the state of railway traffic safety 2021]. Urząd Transportu Kolejowego. Warszawa 2022.
Ustawa z dnia 6 czerwca 1997 r. – Kodeks karny (Dz.U. 1997 nr 88 poz. 553).
Ustawa z dnia 28 marca 2003 r. o transporcie kolejowym [Rail Transport Act 2003].
Wulgaris, P 2020. Straż Ochrony Kolei wobec zdarzeń zagrażających bezpieczeństwu na obszarze kolejowym [Railway Security Guard to the incidents threatening safety in the railway area]. In: Skalski, D, Telak, J, Zieliński, E, Czarnecki, D Kultura Fizyczna, Medycyna, Zarządzanie I Bezpieczeńtwo. Gdańsk, 51-66.
Journals System - logo
Scroll to top