ORIGINAL ARTICLE
Mobile GIS in Mapping Vegetation on Mine Heaps: A modern Approach to Reclamation of Post-mining Areas
 
More details
Hide details
1
Research Center of Post-Mining, Technische Hochschule Georg Agricola, Bochum, Germany
 
 
Submission date: 2025-05-22
 
 
Final revision date: 2025-06-30
 
 
Acceptance date: 2025-07-06
 
 
Online publication date: 2025-07-18
 
 
Publication date: 2025-07-18
 
 
Corresponding author
Marcin Piotr Pawlik   

Research Center of Post-Mining, Technische Hochschule Georg Agricola, Herner Str. 45, 44787, Bochum, Germany
 
 
Civil and Environmental Engineering Reports 2025;35(3):181-197
 
KEYWORDS
TOPICS
ABSTRACT
This paper presents the application of mobile geographic information systems (mobile GIS) in the study of successional vegetation in the Schöttelheide area, a degraded heap of the former Prosper-Haniel mine in the Ruhr region. This area, left to natural succession, became the focus of research using Survey123 and Flora Incognita for the automatic identification of plant species. The aim of the study was to make a spatial inventory of the plant communities taking into account the stage of succession, the presence of invasive species and the natural valorisation. The results showed that mobile GIS is an extremely effective and flexible tool for monitoring ecological succession in hard-to-reach and heterogeneous post-mining habitats.
REFERENCES (29)
1.
Kasztelewicz, Z and Ptak, M 2011. Rekultywacja terenów pogórniczych w kopalniach surowców skalnych [Reclamation of post-mining terrains in polish quarries]. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 132, 165–175.
 
2.
Goerke-Mallet, P et al. 2020. The Importance of “Social Licence to Operate” for the Mining Life Cycle. Mining Report Glückauf, 156,4, 323-332.
 
3.
Kasprzyk P 2009. Kierunki rekultywacji w górnictwie odkrywkowym [Direction of reclamation in surface mining]. Problemy Ekologii Krajobrazu, 24, 7–15.
 
4.
Kasztelewicz, Z et al. 2010. Rekultywacja terenów poeksploatacyjnych w polskim górnictwie węgla brunatnego [Reclamation of post-exploitation terrains in polish lignite mining]. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, Inżynieria Środowiska, 137,17, 16–26.
 
5.
Kappes, H et al. 2012. Historical small‐scale surface structures as a model for post‐mining land reclamation. Restoration Ecology, 20(3), 322–330.
 
6.
Mocek-Płóciniak, A 2014. Biologiczna rekultywacja terenów zdegradowanych po eksploatacji węgla brunatnego i rud miedzi [Biological reclamation of areas degraded after the excavation of lignite and coppers ores]. Nauka Przyroda Technologie, 8(3), 1–9.
 
7.
Chmura, D et al. 2011. Sites of leachate inflows on coal mine heaps as refuges of rare mountainous species. Polish Journal of Environmental Studies, 20(3), 551–557.
 
8.
Kompała-Bąba, A et al. 2020. Do the dominant plant species impact the substrate and vegetation composition of post-coal mining spoil heaps? Ecological Engineering, 143, 105685.
 
9.
Kompała-Bąba, A et al. 2021. The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Scientific Reports, 11, 5155.
 
10.
Woźniak, G et al. 2021. Use of remote sensing to track postindustrial vegetation development. Land Degradation & Development, 32(5), 1426–1439.
 
11.
Nowak, M et al. 2020. Mobile GIS applications for environmental field surveys: A state of the art. Global Ecology and Conservation. 23. e01089.
 
12.
Zarzecki, M and Pasierbiński, A. 2014. Zastosowanie GIS i teledetekcji w badaniach szaty roślinnej [Applications of GIS and remote sensing in vegetation research]. Badania Fizjograficzne, 65, 147–159.
 
13.
Król, K et al. 2016. Interaktywna prezentacja zagadnień środowiskowych za pomocą Google Fusion Tables na przykładzie zdjęć fitosocjologicznych wybranych okolic Tenczynka [Interactive presentation of environmental issues using Google Fusion tables on the examples of phytosociological images of selected Tenczynek areas]. Acta Scientiarum Polonorum. Formatio Circumiectus. 15 (4), 253-264.
 
14.
Quirini-Popławski, Ł and Semczuk, M 2021. Wykorzystanie aplikacji mobilnych GIS w zarządzaniu dziedzictwem kulturowym. Propozycja postępowania badawczego [Use of mobile GIS applications in cultural heritage management. A research proposal]. Perspektywy Kultury. 35. 199-222.
 
15.
Pawlik, M et al. 2023. The use of Mobile GIS in scientific research – Post-Mining Case Studies. In: IOP Conference Series Earth and Environment Science 1189 012023, 1-19.
 
16.
Dettmar, J 2022. Rekultivierung von Bergehalden im Ruhrgebiet [Recultivation of mine waste dumps in the Ruhr region]. In: Albrecht, H et al. (ed) Bergbau und Umwelt in DDR und BRD. Berlin, Boston: De Gruyter Oldenbourg,163-193.
 
17.
Berke, W 2009. Über alle Berge. Der definitive Haldenführer Ruhrgebiet [Over all the mountains. The definitive guide to spoil tips in the Ruhr region]. Essen: Klartext.
 
18.
Bezirksregierung Köln. Historische digitale Orthophotos [Historical digital orthophotos] https://www.wms.nrw.de/geobasi... Datenlizenz Deutschland – Zero (https://www.govdata.de/dl-de/z...) (data online: 12.06.2025).
 
19.
Bezirksregierung Köln. Digitales Gelände Modell [Digital Terrain Model] https://www.bezreg-koeln.nrw.d... (data online: 11.06.2025).
 
20.
Esri 2023. ArcGIS Survey123 Resources. https://www.esri.com/en-us/arc... (data online: 22.05.2025).
 
21.
Mäder, P et al. 2021. The Flora Incognita app – Automated plant species identification. Ecological Informatics, 61, 101236.
 
22.
Wäldchen, J et al. 2018. Automated plant species identification – Trends and future directions. PLOS Computational Biology, 14(4), e1005993.
 
23.
Bezirksregierung Köln. Digitale topographische Karte 1:10000 [Digital topographic map 1:10000] https://www.wms.nrw.de/geobasi... Datenlizenz Deutschland – Zero (https://www.govdata.de/dl-de/z...) (data online: 12.06.2025).
 
24.
Umweltkumpel https://umweltkumpel.thga.de/u... (data online: 12.06.2025).
 
25.
Rudolph, T et al. 2024. Veränderungsmanagement im Bergbaulebenszyklus benötigt Vertrauen!. [Change-Management in the Mining-Life-Cycle Needs Trust!]. Mining Report Glückauf 160 (2), S. 96-108.
 
26.
Rudolph, T and Goerke-Mallet, P 2024. Das Fahrrad – Ein partizipatives Werkzeug im bergbaulichen Lebenszyklus! [The bicycle - a participatory tool in the mining life cycle!]. Markscheidewesen 131 (2), 31-41.
 
27.
Bonnet, P et al. 2018. Plant Identification: Experts vs. Machines in the Era of Deep Learning. In: Joly, A, Vrochidis, S, Karatzas, K, Karppinen, A, Bonnet, P (eds) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. Multimedia Systems and Applications. Springer, Cham.
 
28.
Rina, S et al. 2023. Application of Machine Learning to Tree Species Classification Using Active and Passive Remote Sensing: A Case Study of the Duraer Forestry Zone. Remote Sensing, 15(10), 2596, 1-20.
 
29.
Mokros, M et al. 2021. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation. 104. 102512, 1-12.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top