ORIGINAL ARTICLE
Integrated Digital Twin and Geo-Fusion for Post-Mining Geomonitoring: Subsurface Modelling and Remote Sensing Applications
More details
Hide details
1
Research Center of Post-Mining, Technische Hochschule Georg Agricola, Bochum, Germany
2
Department 11 Integrated Geological Survey, Geological Survey of North Rhine-Westphalia, Krefeld, Germany
3
Institute of Mine Surveying and Geodesy, Technical University Bergakademie Freiberg, Freiberg, Germany
Submission date: 2025-01-16
Final revision date: 2025-05-17
Acceptance date: 2025-05-20
Online publication date: 2025-06-23
Publication date: 2025-06-23
Corresponding author
Marcin Piotr Pawlik
Research Center of Post-Mining, Technische Hochschule Georg Agricola, Herner Str. 45, 44787, Bochum, Germany
Civil and Environmental Engineering Reports 2025;35(3):48-70
KEYWORDS
TOPICS
ABSTRACT
Post-mining landscapes present significant environmental and geotechnical challenges due to long-term impacts of underground exploitation, such as ground deformation, subsurface instability, and environmental degradation. Conventional monitoring methods often fall short due to a lack of surface indicators of underlying geological structures. Thus, accurately identifying subsurface discontinuities—such as faults, cavities, and weakened zones is essential for effective environmental risk assessment and sustainable land-use planning.
Previously, these challenges were approached using traditional surveying methods, which often lacked precision and were time-consuming. In this study, we introduce an innovative methodology utilizing MOVE software for comprehensive 3D geological modelling and UAV multispectral surveys to acquire detailed surface data. The process is complemented by rigorous field validation, involving the integration of geological, tectonic, and mining maps with borehole logs and seismic profiles.
Our results confirm the presence of persistent subsurface discontinuities in historically mined areas, often aligned with tectonic structures, subsidence lakes, and vegetation stress zones. This enhanced mapping of geological discontinuities and the comprehensive stability analysis of embankments demonstrate the methodology's potential to improve geomonitoring accuracy. Furthermore, our framework supports the development of dynamic digital twin models for predictive modelling and environmental risk management.
Overall, this integrated approach offers a robust and transferable methodology for addressing subsurface challenges in post-mining and similar environments, ultimately enabling more informed decision-making and long-term planning in areas affected by legacy mining activities.
REFERENCES (34)
1.
Goerke-Mallet, et al. 2017. Innovative Monitoring-Maßnahmen im (Nach-) Bergbau [Innovative Monitoring Measures in the Phase of Post-Mining]. Mining Report Glückauf 153, 3, 264–271.
2.
Melchers, C et al.2016. Elemente und Aspekte des Nachbergbaus [Elements and Aspects of the Post-Mining Era]. Mining Report Glückauf 152, 3, 215–223.
3.
Pawlik, Ł et al. 2024. Evaluation of the hillslope fine-scale morphology under forest cover with pit-mound topography. Integration of geomorphometry, geophysical methods, and soil features, Geomorphology, 460, 109283, 1-11.
4.
Kratzsch, H 2005 Bergschadenkunde [Mining damage], Bochum: Deutscher Markscheider Verein.
5.
Harnischmacher, S 2012. Bergsenkungen im Ruhrgebiet - Ausmaß und Bilanzierung anthropogeomorphologischer Reliefveränderungen [Subsidence in the Ruhr area - extent and assessment of anthropogeomorphological relief changes]. Deutsche Akademie für Landeskunde.
6.
Melchers, C et al. 2019. Evaluierung von Grubenwasseranstiegsprozessen – im Ruhrgebiet, Saarland, in Ibbenbüren sowie weiteren deutschen Steinkohlenrevieren und dem angrenzenden europäischen Ausland. [Evaluation of Mine Water Rebound Processes – in the German Coalfields of Ruhr, Saar, Ibbenbüren, and the adjacent European Countries]. Bochum: Selbstverlag des Deutschen Bergbau-Museums Bochum.
7.
Westermann, S et al. 2017. Evaluation of mine water rebound processes in European Coal Mine Districts to enhance the understanding of hydraulic, hydrochemical and geomechanical processes. In: Wolkersdorfer, C et al. (ed) IMWA 2017– Mine Water & Circular Economy. Lappeenranta, Finland, 147–153.
8.
Rudolph, T 2019. Digital Twin – Integriertes Geomonitoring weiterentwickelt [Digital Twin - Integrated geomonitoring further developed]. Tagungsband Bergbau, Energie und Rohstoffe 2019. Technische Hochschule Georg Agricola, Forschungszentrum Nachbergbau; Deutscher Markscheider-Verein.
9.
Pawlik, M et al. 2022. Digital-Twin–How to observe changes and trends on the post-mining areas. International Journal of Earth & Environmental Sciences, 7(1), 1-13.
11.
Böse, C et al. 2018. Kohle - Koks - Öl, Die Geschichte des Bergwerks Prosper-Haniel [Coal - Coke - Oil, The history of the Prosper-Haniel mine]. Münster: Aschendorff Verlag.
13.
Heitfeld, M et al. 2019. Gutachten zu den Bodenbewegungen im Rahmen des stufenweisen Grubenwasseranstiegs im Bereich der Wasserprovinz Prosper-Haniel [Expertise on ground movements as part of the gradual rise in mine water levels in the Prosper-Haniel water province].
https://extra.bra.nrw.de/fileb... (online on 29.05.2025)
14.
Rudolph, T 2006. Deckgebirgsdaten im südwestlichen Münsterland und Ruhrgebiet [Overburden data in the south-west Münsterland and Ruhr area]. Münster: Westfälische Wilhelms-Universität Münster.
15.
Wesche, D 2017. Analyse der hydrogeologischen Eigenschaften der Deckgebirgsschichten und Störungen im Münsterländer Kreidebecken auf Grundlage eines neuen integrierten 3D-Untergrundmodells [Analysis of the hydrogeological properties of the overburden and faults in the Münsterland chalk basin based on a new integrated 3D subsurface model]. Clausthal-Zellerfeld: Institut für Geotechnik und Markscheidewesen.
16.
Alberts, B et al. 1988. Geologie am Niederrhein [Geology on the Lower Rhine]. Krefeld: Geologisches Landesamt NRW.
17.
Hilden, HD et al. 1995. Geologie im Münsterland [Geology in the Münsterland]. Krefeld: Geologisches Landesamt NRW.
18.
RAG. 2019. Ergänzung zum Abschlussbetriebsplan unter Tage für den Stillstandsbereich Bergwerk Prosper Haniel [Supplement to the final underground operating plan for the Prosper Haniel mine closure area].
19.
Kunz, E et al. (Eds). 1980. Ergänzende Beiträge zur Tiefentektonik des Ruhrkarbons - Textband [Supplementary contributions to the deep tectonics of the Ruhr Carboniferous - Text volume]. Krefeld: Geologisches Landesamt NRW.
20.
Kunz, E et al. (Eds). 1988. Ergänzende Beiträge zur Tiefentektonik des Ruhrkarbons [Supplementary contributions to the deep tectonics of the Ruhr Carboniferous]. Krefeld: Geologisches Landesamt NRW.
21.
Wrede, V et al. (Eds.) 2000. Geologische Karte von Nordrhein-Westfalen 1:25.000 - 4407 Bottrop (Erläuterungen) [Geological map of North Rhine-Westphalia 1:25.000 - 4407 Bottrop (Explanations)]. Geologisches Landesamt NRW.
22.
Jansen, F et al. (Eds). 1995. Geologische Karte von Nordrhein-Westfalen 1:25.000 - 4406 Dinslaken (Erläuterungen) [Geological map of North Rhine-Westphalia 1:25.000 - 4406 Dinslaken (Explanations)]. Geologisches Landesamt NRW.
23.
Dölling, B et al. (Eds). 2020. Integrierte geologische Landesaufnahme in Nordrhein-Westfalen: Erläuterungen zum Kartierprojekt Ruhrgebiet [Integrated geological survey in North Rhine-Westphalia: Explanations on the mapping project Ruhr area]. Geologischer Dienst NRW.
24.
Pawlik, M et al. 2021. Review of vegetation indices for studies of post-mining processes. IOP Conference Series: Earth and Environmental Science 942, 12034.
27.
Kuechly, H et al. 2020. Grundlagen der Fernerkundung [Basics of remote sensing]. Potsdam: Deutsches GeoForschungsZentrum GFZ.
28.
Rouse, JW et al. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.
29.
Nex, F and Remondino, F 2014. UAV for 3D mapping applications: A review. Applied Geomatics, 6, 1–15.
30.
James, MR et al. 2020. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 226, 103–121.
31.
Hajaj, S et al. 2024. A review on hyperspectral imagery application for lithological mapping and mineral prospecting: Machine learning techniques and future prospects. Remote Sensing Applications Society and Environment. 35.
32.
Nowak, MM et al. 2020. Mobile GIS applications for environmental field surveys: A state of the art. Global Ecology and Conservation 23: e01089.
33.
Blachowski, J and Koźma, J 2006. Applications of satellite GPS positioning in geotope inventorying and tourist development of the polish part of the planned “Muzakov Arc” Geopark. Mining Science VIII: 23–34.
34.
Pawlik, M et al.2022. Analyse des Zustands der Vegetation auf dem Gelände des stillgelegten Bergwerks Prosper-Haniel anhand von multispektralen Satellitenbildern der Sentinel-2 Mission und Drohnenflüge [Analysis of the condition of the vegetation on the site of the disused Prosper-Haniel mine using multispectral satellite images from the Sentinel-2 mission and UAV flight image data]. Markscheidewesen 1, 129, 37-44.