ORIGINAL ARTICLE
Decommissioning of a Lignite Mine Combined with the Development of a Pumped-Storage Power Plant: A Preliminary Feasibility Assessment
 
More details
Hide details
1
Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Krakow, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2025-05-16
 
 
Final revision date: 2025-10-30
 
 
Acceptance date: 2025-11-12
 
 
Online publication date: 2025-12-08
 
 
Publication date: 2025-12-08
 
 
Corresponding author
Wojciech Robert Naworyta   

Katedra Górnictwa Odkrywkowego, AGH University of Science and Technology, Al. Mickiewicza 30, 30059, Kraków, Poland
 
 
Civil and Environmental Engineering Reports 2025;35(4):212-227
 
KEYWORDS
TOPICS
ABSTRACT
This publication addresses the potential construction of a pumped-storage power plant (PSP) in post-lignite mining areas.The Turów mine, located in the Bogatynia commune in southwestern Poland, was selected as a case study. Several design variants for the upper reservoir, situated on the former external mine dump, were analyzed. Several design variants for the upper reservoir, situated on the former external mine dump, were analyzed. Based on data from existing Polish PSP facilities, the potential capacity of the Turów PSP was estimated depending on the selected reservoir configuration. The study highlights the advantages of coordinating the construction of the PSP with the mine closure process. The use of mining machines withdrawn from the mine was recommended. Earth masses from the dump should be used in the process of preparing the final excavation to serve as a reservoir. Combining the construction of the PSPP with the liquidation of the mine will accelerate both processes and reduce costs. The presented project is of a future nature. According to the concession, the end of mining will take place no later than 2044. Preparing the excavation to serve as a reservoir and filling the reservoir with water may take up to 4 decades. Due to the limited availability of water, it is difficult to accelerate this process. As a result, electricity from the PSP may flow at the earliest in the 80s of the 21st century. A general conclusion drawn from this study is that former lignite mining sites—featuring excavations that can serve as reservoirs and adjacent external dumps—offer significant potential for the development of pumped-storage power plants. The article also identifies additional locations with similar suitability for future PSP development.
REFERENCES (22)
1.
Álvarez, H, Domínguez, G, Ordóñez, A, Menéndez, J, Álvarez, R and Loredo, J 2021. Mine water for the generation and storage of renewable energy: A hybrid hydro–wind system. International Journal of Environmental Research and Public Health, 18, 6758. doi:10.3390/ijerph18136758.
 
2.
Antoniadis, A, Roumpos, C, Anagnostopoulos, P and Paraskevis, N 2021. Planning RES projects in exhausted surface lignite mines—Challenges and solutions. Materials Proceedings 5, 93. doi:10.3390/materproc2021005093.
 
3.
Bajcar, A, Szczepiński, J and Rogosz, B 2021. Bathymetry surveys of post-mining pit lakes formed after exploitation of lignite. Materials Proceedings 5, 117. doi:10.3390/materproc2021005117.
 
4.
Bódis, K, Kougias, I, Taylor, N and Jäger-Waldau, A 2019. Solar photovoltaic electricity generation: A lifeline for the European coal regions in transition. Sustainability 11, 3703. doi:10.3390/su11133703.
 
5.
Carreras, BA, Colet, P, Reynolds-Barredo, JM and Gomila, D 2021. Assessing blackout risk with high penetration of variable renewable energies. IEEE Access 9. doi:10.1109/ACCESS.2021.3114121.
 
6.
Jardón, S, Ordóñez, A, Álvarez, R, Cienfuegos, P and Loredo, J 2013. Mine water for energy and water supply in the Central Coal Basin of Asturias (Spain). Mine Water and the Environment 32(2). doi:10.1007/s10230-013-0224-x.
 
7.
Fan, J, Xie, H, Chen, J, Jiang, D, Li, C, Ngaha Tiedeu, W and Ambre J 2020. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs. Applied Energy 258, 114007. doi:10.1016/j.apenergy.2019.114007.
 
8.
Kaliński, J 2016. Zagłębia węgla brunatnego w Polsce po 1945 r. [Lignite basins in Poland after 1945]. W: Jarosz-Nojszewska, A, Morawski, W (red.), Problemy energetyczne Polski. Część I: Surowce. Warszawa: OW SGH. (In Polish).
 
9.
Kałuza, T, Hämmerling, M, Zawadzki, P, Czekała, W, Kasperek, R, Sojka, M, Mokwa, M, Ptak, M, Szkudlarek, A, Czechlowski, M, et al. 2022. The hydropower sector in Poland: Barriers and the outlook for the future. Renewable and Sustainable Energy Reviews 163, 112500.
 
10.
Kowalski, E, Rotkegel, M and Stałęga, S 2008. Uwarunkowania geologiczno-inżynierskie wznowienia budowy Elektrowni Szczytowo-Pompowej „Młoty” koło Bystrzycy Kłodzkiej [Geological and engineering conditions for the resumption of construction of the Pumped-Storage Power Plant "Młoty" near Bystrzyca Kłodzka]. Górnictwo i Geoinżynieria 32, 213–226. (In Polish).
 
11.
Krupa, K, Nieradko, Ł, Haraziński, A 2018. Prospects for energy storage in the world and in Poland in the 2030 horizon. Polityka Energetyczna – Energy Policy Journal 21(2), 19–34. doi:10.24425/122770.
 
12.
Kulpa, J, Kopacz, M, Stecuła, K and Olczak, P 2024. Pumped storage hydropower as a part of energy storage systems in Poland—Młoty case study. Energies 17(8), 1830. doi:10.3390/en17081830.
 
13.
Latona, D, Pinedo, E and Lombardi, P 2025. How warning signs hinted at Spain’s unprecedented power outage. Reuters. Access: Mai 2025. https://www.reuters.com/busine....
 
14.
Menéndez, J, Fernández-Oro, JM, Galdo, M and Loredo, J 2020. Efficiency analysis of underground pumped storage hydropower plants. Journal of Energy Storage 28, 101234. doi:10.1016/j.est.2020.101234.
 
15.
Menéndez, J, Ordóñez, A, Álvarez, R and Loredo, J 2019. Energy from closed mines: Underground energy storage and geothermal applications. Renewable and Sustainable Energy Reviews 108, 498–512. doi:10.1016/j.rser.2019.04.007.
 
16.
Naworyta, W 2014. Discussion on the future development of the post-mining areas of LM Turów, taking into account the possibilities and limitations. Węgiel Brunatny 2(87), 22–26. (In Polish).
 
17.
Naworyta, W 2025. Assessment of the possibility of balancing energy consumption in a household using a PV installation and energy storage. Zeszyty Naukowe IGSMiE PAN, 1(113), 17–33. doi:10.33223/zN/2025/02 (In Polish, abstract in English).
 
18.
Nowak, B, Szadek, P, Szymański, K and Lawniczak-Malińska, A 2023. Concept and implementation of solutions improving water relations in the area of the flooded opencast lignite mine Kazimierz Północ in the East Wielkopolska Region (Central-West Poland). Water 15(4), 706. doi:10.3390/w15040706.
 
19.
Rzętała, M, Jagus, A and Rzętała, M 2013. Water storage in anthropogenic lakes in southern Poland during high and low water stages. Chemistry-Didactics-Ecology-Metrology 18, 77–88. doi:10.2478/cdem-2013-0020.
 
20.
Sawicki, J 2009. Analiza technicznych możliwości budowy elektrowni szczytowo-pompowej w odkrywkach KWB Bełchatów [Analysis of the technical possibilities of building a pumped-storage power plant in the open-pit mines of the Bełchatów Lignite Mine]. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 128. (In Polish, abstract in English).
 
21.
Wachowiak, M and Wachowiak, A 2005. Zbiornik w wyrobisku końcowym odkrywki „Pątnów” Kopalni Węgla Brunatnego „Konin” i jego bilans wodny za okres 2003–2004 [The reservoir in the final excavation of the "Pątnów" open pit of the "Konin" Lignite Mine and its water balance for the period 2003–2004]. Badania Fizjograficzne nad Polską Zachodnią. Seria A, Geografia Fizyczna, 56, 157–176. (In Polish).
 
22.
Wójcik, J and Krzaklewski, W 2019. Afforestation as a method of reclamation of soilless land in brown coal mining in Poland. Ecological Engineering & Environmental Technology 20(1), 24–37. doi:10.12912/23920629/106204.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top