Canonical Variate Analysis of Chlorophyll Content in Plants Exposed to Different Lead Concentrations in Ambient Air Conditions/ Analiza Zmiennych Kanonicznych Zawatości Chlorofilu W Roślinach Eksponowanych Na Różne Stężenia Ołowiu W Powietrzu Atmosferycznym
More details
Hide details
Department of Mathematical and Statistical Methods, Poznan University of Life Poznan University of Life Sciences, Poland
Department of Mathematical and Statistical Methods, Poznan University of Life Poznan University of Life Sciences,Poland
Department of Ecology and Environmental Protection, Poznan University of Life Poznan University of Life Sciences, Poland
Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University Poznan, Poland
Online publication date: 2015-02-06
Publication date: 2014-09-01
Civil and Environmental Engineering Reports 2014;14(3):15–26
This paper presents the results of biomonitoring of Pb in ambient air. For this purpose Italian ryegrass was used to evaluate Pb level. Additionally chlorophyll forms (a+b, a and b) were measured in leaves. Plants were exposed at 5 sites varying in environmental characteristics in the 2011 growing season. A similar set of plants was conducted in control conditions. Three 28-day long exposure series were performed. The aim of this study was to analyse the relation between Pb level and chlorophyll content in various exposure sites and series using multivariate analysis of variance. The analysis revealed variability of Pb and all chlorophyll forms contents in different exposure sites and series. The lowest level of Pb concentrations was noted at a sub-urban site together with the highest level of all chlorophyll forms contents. Canonical variate analysis could be a proper tool for a graphical data presentation of Pb level in plants exposed to various environmental conditions.
Ahsan N., Renaut J., Komatsu S.: Recent developments in the application of proteomics to the analysis of plant responses to heavy metals, Proteomics, 9, (2009) 2602-2621.
Behan D.F., Eriksen M.P., Lin Y.: Economy effect of environmental tobacco smoke, Schaumburg, Society of Actuaries 2005.
Burzyński M., Żurek A.: Effect of copper and cadmium on photosynthesis in cucumber cotyledons, Phytosynthetica 45, 2 (2007) 239-244.
De Filippis L.F, Hampp R, Ziegler H.: The effect of sub-lethal concentration of zinc, cadmium and mercury on Euglena II. Respiration, photosynthesis and photochemical activities, Archives of Microbiology 128, (1981) 407-411.
De Filippis L.F, Pallaghy C.K.: Heavy metals: Sources and biological effects, in: Algae and Water Pollution, eds. E. Schweizerbart’sche, L.C. Rai, J.P. Gaur, C.J. Soeder, Stuttgart, Verlagsbuchhandlung, 1976, 31-77.
Fargašová A. Phytotoxic effects of Cd, Zn, Pb, Cu, and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots, Biologia Plantarum 44, (2001) 471-473.
Juda-Rezler K.: Oddziaływanie zanieczyszczeń powietrza na środowisko, Warszawa, Oficyna Wydawnicza Politechniki Warszawskiej 2006 [In Polish].
Gruca-Królikowska S., Wacławek W.: Metale w środowisku część II. Wpływ metali ciężkich na rośliny, Chemia-Dydaktyka-Ekologia- Meteorologia 11, (2006) 1-2 [In Polish].
Hiscox J.D., Israelstam G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration, Canadian Journal of Botany, 57, (1978) 1332-1334.
Kayzer D., Borowiak K., Budka A., Zbierska J.: Study of interaction in bioindication research on tobacco plant injuries caused by ground level ozone, Environmetrics 20, (2009) 666-675.
Klumpp A., Ansel W., Klumpp G.: Urban air quality in Europe- results of three years of standarised biomonitoring studies, in: Urban Air Pollution, Bioindication and Environmental Awareness, eds. A. Klumpp, G. Klumpp, W. Ansel, Gottingen, Cuvillier Verlag 2004, 25-40.
Lejeune M., Caliński T.: Canonical analysis applied to multivariate analysis of variance, Journal of Multivariate Analysis 72, (2000) 100-119.
Myśliwa-Kurdziel B., Prasad M.N.V., Strzałka K.: Photosynthesis in Heavy Metal Stress Plants, in: Heavy Metal Stress in Plants, from Biomolecules to Ecosystems, second Edition, ed. M.N.V. Prasad, Berlin Heidelberg, Springer-Verlag 2004, 146-181.
Pollard A.J., Powell K.D., Harper F.A., Smith J.A.C.: The genetic basis of metal hyperaccumulation in plants, Critical Reviews in Plant Sciences 21, (2002) 539 - 566.
Seber G.A.F.: Multivariate observations. New York, Wiley 1984.
Shoaf W.T., Lium R.W.: Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide, Limnology and Oceanography, 21, (1976) 926-928.
Tomasević M., Anicić M.: Trace element content in urban tree leaves and sem-edax characterisation of deposited particles, Physics, Chemistry and Technology, 8, 1 (2010) 1-13.
Vangronsveld J, Clijsters H.: Toxic effects of metals, in: Plant and the Chemical Elements: Biochemistry, Uptake, Tolerance and Toxicity, ed. M.E. Farago, VCH Verlagsgesellschaft, Weinheim, 1994, 150-177.
Vassilev A., Berova M., Zlatev Z.:. Influence of Cd2+ on growth, chlorophyll content and water relations in young barley plants. Biologia Plantarum 41, 4 (1998) 601-606.
VDI, Biological Measuring Techniques for the Determination and Evaluation of Effects of Air Pollutants on Plant (Bioindication) 2003. Method of standardized Grass Exposure. Guideline 3957. Part 2. Verein Deutscher Ingenieure, Beuth Verlag, Berlin, 2003.
Żurek G.: Rośliny alternatywne w fitoekstrakcji metali ciężkich z obszarów skażonych. Problemy Inżynierii Rolniczej 3, (2009) 83-86 [In Polish].