ORIGINAL ARTICLE
Shear Strength of Waste Limestone Aggregate for Embankment Reinforcements
,
 
 
 
More details
Hide details
1
Poznan University of Technology, Institute of Civil Engineering, Division of Geotechnics, Engineering Geology and Land Surveying, Poland
 
2
University of Science and Technology in Bydgoszcz, Faculty of Civil and Environmental Engineering and Architecture, Poland
 
 
Submission date: 2025-03-13
 
 
Final revision date: 2025-06-06
 
 
Acceptance date: 2025-06-29
 
 
Online publication date: 2025-08-01
 
 
Publication date: 2025-08-01
 
 
Corresponding author
Szymon Topoliński   

Faculty of Civil and Environmental Engineering and Architecture, University of Science and Technology in Bydgoszcz, Faculty of Civil and Environmental Engineering and Architecture, Poland, Prof. S. Kaliskiego street 7, 85-796, Bydgoszcz, Poland
 
 
Civil and Environmental Engineering Reports 2025;35(3):362-371
 
KEYWORDS
TOPICS
ABSTRACT
The increasing demand for construction materials and the depletion of natural aggregates highlights the need for sustainable alternatives. This study investigates the feasibility of using lime waste, a byproduct of the Solvay process, as a material for embankment construction. The tested material was sourced from the JANIKSODA Production Plant landfill (CIECH Soda Polska S.A.) in Janikowo, Poland. A series of laboratory tests, including granulometric analysis, moisture content determination, and direct shear strength tests, were conducted using a Large-Scale Direct Shear Apparatus (WABS). The results indicate that the tested material has an internal friction angle of approximately 47° and a relative density index (Id) between 0.65 and 0.85, confirming its suitability for use in embankment construction. These findings contribute to the development of sustainable geotechnical solutions by promoting the use of industrial waste as an alternative to natural aggregates. The study encourages further research and practical implementation of waste-based materials in construction, supporting environmentally friendly and durable earth structures.
REFERENCES (24)
1.
Huynh, TP and Ngo, SH 2022. Waste incineration bottom ash as a fine aggregate in mortar: An assessment of engineering properties, durability, and microstructure. Journal of Building Engineering 52, 104446.
 
2.
Shaheen, SM, Hooda, PS and Tsadilas, CD 2014. Opportunities and challenges in the use of coal fly ash for soil improvements – A review. Journal of Environmental Management 145, 249–267.
 
3.
Mahvash, S, López-Querol, S and Bahadori-Jahromi, A 2017. Effect of class F fly ash on fine sand compaction through soil stabilization. Heliyon 3(3), e00274.
 
4.
Jayaranjan, MLD, van Hullebusch, ED and Annachhatre, AP 2014. Reuse options for coal-fired power plant bottom ash and fly ash. Reviews in Environmental Science and Bio/Technology 13(4), 467–486.
 
5.
Sharma, AK and Sivapullaiah, PV 2016. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils and Foundations 56(2), 205–212.
 
6.
Yadu, L and Tripathi, RK 2013. Effects of granulated blast furnace slag in the engineering behaviour of stabilized soft soil. Procedia Engineering 51, 125–131.
 
7.
Nidzam, RM and Kinuthia, JM 2010. Sustainable soil stabilisation with blastfurnace slag – a review. Proceedings of the Institution of Civil Engineers – Construction Materials 163(3), 157–165.
 
8.
Igwe, O and Adepehin, EJ 2017. Alternative approach to clay stabilization using granite and dolerite dusts. Geotechnical and Geological Engineering 35(4), 1657–1664.
 
9.
Blayi, RA, Sherwani, AFH, Mahmod, FHR and Ibrahim, HH 2021. Influence of rock powder on the geotechnical behaviour of expansive soil. International Journal of Geosynthetics and Ground Engineering 7(1), 14.
 
10.
Abdelkader, HAM, Ahmed, ASA, Hussein, MMA, Ye, H and Zhang, J 2022. An experimental study on geotechnical properties and micro-structure of expansive soil stabilized with waste granite dust. Sustainability 14, 6218.
 
11.
Umu, SU 2023. Assessment of sustainable expanded glass granules for enhancing shallow soil stabilization and dynamic behaviour of clay through resonant column tests. Eskisehir Technical University Journal of Science and Technology A – Applied Sciences and Engineering 24, 1–10.
 
12.
Ghanbari, A and Karimi, H 2023. Study of soil reinforcement in the east of Mashhad using glass granule. Materials Research Express 10, 045501.
 
13.
Mahmutluoglu, B and Bagriacik, B 2021. Sustainable implementation of glass manufacturing waste and geogrids in the improvement of fine-grained soils. KSCE Journal of Civil Engineering 25, 1295–1307.
 
14.
Kowalski, T, Nowak, M and Wiśniewski, P 2019. Feasibility of agricultural biomass fly ash usage for soil stabilisation of road works. Materials 12, 1375.
 
15.
Sarkkinen, M, Kujala, K, Kemppainen, K and Gehör, S 2016. Effect of biomass fly ashes as road stabilisation binder. Road Materials and Pavement Design 19(1), 239–251.
 
16.
Iyaruk, A, Promputthangkoon, P and Lukjan, A 2022. Evaluating the performance of lateritic soil stabilized with cement and biomass bottom ash for use as pavement materials. Infrastructures 7(5), 66.
 
17.
Buczkowski, R (ed) 2011. Technologie proekologiczne w przemyśle i energetyce: znaczenie dla gospodarki i środowiska [Eco-friendly technologies in industry and energy: Importance for economy and environment]. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
 
18.
Polski Komitet Normalizacyjny 1988. PN-B-04481:1988. Grunty budowlane. Badania próbek gruntu [Building soils. Testing of soil samples]. Warsaw: PKN.
 
19.
ASTM International 2004. ASTM D3080-04: Standard test method for direct shear test of soils under consolidated drained conditions. West Conshohocken: ASTM International.
 
20.
Polski Komitet Normalizacyjny 2009. PKN-CEN ISO/TS 17892-10:2009. Badania geotechniczne – Badania laboratoryjne gruntów – Część 10: Badanie ścinania bezpośredniego [Geotechnical investigation and testing – Laboratory testing of soil – Part 10: Direct shear tests]. Warsaw: PKN.
 
21.
British Standards Institution 1990. BS 1377-7: Methods of test for soils for civil engineering purposes – Part 7: Shear strength tests (total stress). London: BSI.
 
22.
Duda, A 2014. Laboratory test report – Determination of shear strength of crushed stone in a large-scale direct shear apparatus. Poznan: Institute of Civil Engineering, Poznan University of Technology.
 
23.
Kujawiński, Z, Sobolewski, P, Raczkowiak, M and Kaliski, A 2014. Sprawozdanie z monitoringu składowiska odpadów z czyszczenia obiektów technologicznych produkcji wapna nawozowego oraz z działu produkcji soli w zakładzie produkcyjnym w Janikowie w 2014 roku [Report on the monitoring of the waste disposal site for cleaning waste from lime fertilizer production facilities and the salt production department at the Janikowo production plant in 2014]. Poznań: TRANSPROJEKT GEOTECHNIKA Sp. z o.o.
 
24.
Duda, A 2018. Analiza właściwości mechanicznych przestrzennego systemu geosyntetycznego jako materiału do budowy konstrukcji oporowych [Analysis of the mechanical properties of a three-dimensional geosynthetic system as a material for the construction of retaining structures]. PhD thesis, Poznan University of Technology, Poznan.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top