ORIGINAL ARTICLE
Comparison of Vegetation Vitality Data and Soil Moisture Measurements at the Prosper-Haniel Closed Mine Site
 
More details
Hide details
1
Research Center of Post-Mining, Technische Hochschule Georg Agricola, Bochum, Germany
 
2
Faculty of Geosciences, Ruhr University Bochum, Bochum, Germany
 
 
Submission date: 2024-10-21
 
 
Final revision date: 2025-11-10
 
 
Acceptance date: 2025-12-03
 
 
Online publication date: 2025-12-17
 
 
Publication date: 2025-12-17
 
 
Corresponding author
Marcin Piotr Pawlik   

Research Center of Post-Mining, Technische Hochschule Georg Agricola, Herner Str. 45, 44787, Bochum, Germany
 
 
Civil and Environmental Engineering Reports 2025;35(4):265-282
 
KEYWORDS
TOPICS
ABSTRACT
Effective management of flood-prone areas, particularly polders, is critical for ecological balance and human safety. This study focuses on mining-induced polders in the Ruhr region, emphasizing the need for sustainable flood protection strategies amidst changing climatic conditions. By analyzing data from the Copernicus Sentinel 2 satellite mission and ground-based measurements, the study investigates vegetation response to variable soil moisture. Especially for polder management in the Ruhr area climate change causes high pressure for adaption. Key findings reveal correlations between soil moisture, soil temperature, and vegetation vitality, emphasizing the importance of continuous monitoring for optimizing post-mining water management. Results suggest that high soil moisture levels, particularly in autumn to spring, significantly influence vegetation health. The study under-scores the necessity for long-term, comprehensive research to validate findings across varied and changing climatic conditions.
REFERENCES (42)
1.
RAG Aktiengesellschaft, Poldermaßnahmen – Bäche im Fluss halten [Polder measures – Keeping streams in the river]. https://www.rag.de/loesungen/p... (last accessed 16 October 2024).
 
2.
Bernsdorf, B et al. 2022. Climate Change | Management and Monitoring – Boden- und In situ-Sensordaten als Schlüssel zum Prozessverständnis halten [Climate Change | Management and Monitoring – Soil and in-situ sensor data as key to process understanding]. Mining Report Glückauf 158 (1), 32-52.
 
3.
Fekete, A 2024. Risiko, Katastrophen und Resilienz – Eine Einführung in Methoden, Konzepte und Themen [Risk, Disasters, and Resilience – An Introduction to Methods, Concepts, and Topics]. Berlin: Springer Spektrum.
 
4.
Deutscher Wetterdienst 2024. Deutschland erlebte den nassesten zwölfmonatigen Zeitraum seit Messbeginn 1881- Aktuelle Auswertung des Deutschen Wetterdienstes [Germany experienced the wettest twelve-month period since records began in 1881 - Current analysis by the German Weather Service] https://www.dwd.de/DE/presse/p... (last accessed 16 October 2024).
 
5.
Alobid, M et al. 2024. Trends and Drivers of Flood Occurrence in Germany: A Time Series Analysis of Temperature, Precipitation, and River Discharge. Water 16(18), 2589, 1-15.
 
6.
Conradt, T et al. 2023. Cross-sectoral impacts of the 2018–2019 Central European drought and climate resilience in the German part of the Elbe River basin. Reg Environ Change 23, 32, 1-18.
 
7.
Young, H 2024. Are extreme floods the new normal for Germany? Deutsche Welle. https://www.dw.com/en/are-extr... (last accessed 20 October 2025).
 
8.
Neumann, N 2022. Peatlands clean acid mine drainage: Wetland restoration and microbial ecosystem services in post-mining areas. Leibniz Institute of Freshwater Ecology and Inland Fisheries. https://www.igb-berlin.de/en/n... (last accessed 20 October 2025).
 
9.
Böse, C, Farrenkopf, M and Weindl, A 2018. Kohle-Koks-Öl, Die Geschichte des Bergwerks Prosper-Haniel [Coal-Coke-Oil, The History of the Prosper-Haniel Mine]. Münster: Aschendorff Publisher.
 
10.
Otkin, JA et al. 2015. Facilitating the use of drought early warning information through interactions with agricultural stakeholders. Bulletin of the American Meteorological Society, 1073-1078.
 
11.
Joiner, J et al. 2018. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sensing of Environment 219 (15), 339-352.
 
12.
Bresinsky, A, Körner, C, Kadereit, JW, Neuhaus, G and Sonnewald, U 2008. Strasburger – Lehrbuch der Botanik 36 [Strasburger – Textbook of Botany 36]. Heidelberg: Spektrum Akademischer Publisher.
 
13.
Rouse, JW, Haas, RH, Deering, DW and Schell, JA 1973. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Remote Sensing Center. Texas University, 1-87.
 
14.
Tucker, CJ 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2), 127-150.
 
15.
Sellers, PJ 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6 (8), 1335–1372.
 
16.
Tucker, CJ and Sellers, PJ 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing 7 (11), 1395–1416.
 
17.
Crippen, RE 1990. Calculating the vegetation index faster. Remote Sensing of Environment 34 (1), 71-73.
 
18.
Sellers, PJ et al. 1992. Canopy reflectance, photosynthesis and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment 42 (3), 187-216.
 
19.
Kuechly, H, Cozacu, A, Kodl, G, Nicolai, C and Vallentin, C 2020. Grundlagen der Fernerkundung, (Inforeihe SAPIENS: Satellitendaten für Planung, Industrie, Energiewirtschaft und Naturschutz) [Fundamentals of remote sensing, (SAPIENS series: Satellite data for planning, industry, energy management and nature conservation)]. Potsdam: Deutsches GeoForschungsZentrum GFZ.
 
20.
Kadereit, JW, Körner, C, Nick, P and Sonnewald, U 2003. Strasburger – Lehrbuch der Pflanzenwissenschaften 38 [Strasburger - Textbook of Plant Sciences 38]. Heidelberg: Spektrum Akademischer Publisher.
 
21.
Wang, J et al. 2003. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing 24, 2345–2364.
 
22.
Pawlik, M et al. 2022. Analyse des Zustands der Vegetation auf dem Gelände des stillgelegten Bergwerks Prosper Haniel anhand von multispektralen Satellitenbildern der Sentinel-2 Mission und Drohnenflüge [Analysis of the vegetation condition on the site of the closed Prosper Haniel mine using multispectral satellite images from the Sentinel-2 mission and drone flights]. Markscheidewesen 129, 37–44.
 
23.
Candiago, S et al. 2015. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sensing 7(4), 4026-4047.
 
24.
Maresma, Á et al. 2016. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing 8 (12) 973, 1-15.
 
25.
Marino, S and Alvino, A 2020. Agronomic Traits Analysis of Ten Winter Wheat Cultivars Clustered by UAV-Derived Vegetation Indices. Remote Sensing 12 (2) 249, 1-16.
 
26.
Marino, S and Alvino, A 2021. Vegetation Indices Data Clustering for Dynamic Monitoring and Classification of Wheat Yield Crop Traits. Remote Sensing 13 (4) 541, 1-21.
 
27.
Doughty, CL et al. 2021. Characterizing spatial variability in coastal wetland biomass across multiple scales using UAV and satellite imagery. Remote Sensing 7in Ecology and Conservation 7 (3),1-19.
 
28.
Bernsdorf, B and Khaing Zin Phyu 2023. Zur Bewertung von In-situ-Sensoren bei der Einschätzung von Prozessabläufen im Geomonitoring [For the evaluation of in-situ sensors in the assessment of process sequences in geomonitoring]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 173 (4), 581-598.
 
29.
Bernsdorf, B, Pawlik, M, Rudolph, T, Jaeckel, J and Haske, B. 2023. Die Integration von In-Situ- und multispektraler UAV Daten, Ein Ansatz zur Beurteilung des Vegetationszustands in nachbergbaulichen Poldern [The integration of in-situ and multispectral UAV data, an approach to assess vegetation condition in post-mining polders]. 21. Altbergbaukoloquim, Essen, Germany, November 09-10, 218-228.
 
30.
Bernsdorf, B et al. 2023. Multisensorales Geomonitoring – Ein Beitrag zur Datenfusion im Nachbergbau [Multisensor Geomonitoring - A contribution to data fusion in post-mining]. gis-Science, 1, 1-16.
 
31.
Seidel, D 2023. Nutzung von Vegetationsindikatoren zur Einschätzung der hydraulischen Lieferfähigkeit des Boye-Einzugsgebietes in Bottrop und Gladbeck. [Use of vegetation indicators to assess the hydraulic supply capacity of the Boye catchment area in Bottrop and Gladbeck]. Masterthesis Technische Hochschule Georg Agricola University (unpublished).
 
32.
Pawlik, M, Haske, B, Flores, H, Jaeckel, J, Bernsdorf, B and Rudolph, T 2023. The use of UAV data to observe post-mining processes and the formation of subsidence lakes in the former mining area of Prosper-Haniel mine. Proceedings of XXIII Conference of PhD Students and Young Scientists, Wroclaw, Poland, Juni 15, p. 41.
 
33.
Pawlik, M, Rudolph, T, Bernsdorf, B and Benndorf, J. 2023. Green Red Water Indices – vegetation indices for environmental Geomonitoring. Proceedings of XXIII Conference of PhD Students and Young Scientists, Wrocław, Poland, Juni 16, p. 39.
 
34.
Pawlik, M et al. 2024. Proposal for a new Green Red Water Index for geo-environmental surface water monitoring. IOP Conference Series: Earth and Environmental Science 1295 012013, 1-24.
 
35.
Than Thar Lwin, N, Pawlik, M, Bernsdorf, B, Rudolph, T and Jaeckel, J 2024. The use of in-situ sensor to observe the soil moisture in mining-influenced polder areas. XXIV Conference of PhD Students and Young Scientists, Wrocław, Poland, October 23-25.
 
36.
Jaeckel, J, Pawlik, M, Bernsdorf, B and Rudolph. T 2024. Comparison of soil moisture data from in-situ measure with geological data, XXIV Conference of PhD Students and Young Scientists, Wrocław, Poland, October 23-25.
 
37.
Jaeckel, J et al. 2025. Comparison of Soil Moisture Data From In-situ Measurements with Geological Data. Civil and Environmental Engineering Reports, 35(1), 272–284.
 
38.
Attarzadeh, R et al. 2018. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sensing, 10(8), 1285, 1-18.
 
39.
Gao, Q et al. 2017. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors, 17(9), 1966, 1-21.
 
40.
Müller, LM and Bahn, M 2022. Drought legacies and ecosystem responses to subsequent drought. Global Change Biology, 28, 5086–5103.
 
41.
Wilson, TB et al. 2012. The effect of soil surface litter residue on energy and carbon fluxes in a deciduous forest. Agricultural and Forest Meteorology 161, 134-147.
 
42.
De Frenne, P et al. 2021. Forest microclimates and climate change: importance, drivers and future research agenda. Global Change Biology, 27(18), 2279–2297.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top