ORIGINAL ARTICLE
Cartographic Editing of Agricultural Crops from the SATMIROL Program on Cadastral Plots as Agricultural Parcels
 
More details
Hide details
1
Wroclaw University of Science and Technology, Department of Geodesy and Geoinformatics, Faculty of Geoengineering, Mining and Geology, Wroclaw, Poland
 
 
Submission date: 2024-12-03
 
 
Final revision date: 2025-05-25
 
 
Acceptance date: 2025-06-01
 
 
Online publication date: 2025-07-28
 
 
Publication date: 2025-07-28
 
 
Corresponding author
Paulina Bidzińska   

Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421, Wrocław, Poland
 
 
Civil and Environmental Engineering Reports 2025;35(3):295-312
 
KEYWORDS
TOPICS
ABSTRACT
The study was aimed at comparing the land cover classified on the basis of satellite imagery with data from soil and agricultural maps and state registers. The analysis covered the areas of the Panki commune in the Kłobuck county (Silesian voivodeship). The data collected included satellite land cover classification (obtained from the Central Statistical Office by the Space Research Centre), information on declared crops from area applications (Silesian Regional Branch of the Agency for Restructuring and Modernisation of Agriculture), and soil and agricultural data compiled from soil maps and land registers. The main task was to harmonise these data to a common coordinate and altitude system. A vectorisation of the crop maps was carried out, making it possible to assign specific crops to agricultural parcels. This was followed by a natural and economic assessment of the crops in the given soil-agricultural complex and an analysis of crop succession in the fields. On the basis of the processed data, a comparison was made between the satellite land cover classification and data from soil-agricultural maps and state registers. The aim of the analysis was to investigate the correspondence between the different data sources and to assess the suitability of satellite imagery in relation to traditional methods of agricultural land classification. The results made it possible to assess the potential discrepancies and advantages of different land registration and classification systems.
REFERENCES (17)
1.
Bielecka, E. 2010. Modelowanie danych przestrzennych. Tom VIII. [Spatial Data Modelling. Volume VIII]. Warszawa: Polskie Towarzystwo Informacji Przestrzennej.
 
2.
Centrum Doradztwa Rolniczego w Brwinowie, Oddział w Poznaniu. 2020. Zasady układania płodozmianu. [Principles of Crop Rotation Planning]. Poznań: Centrum Doradztwa Rolniczego w Brwinowie, Oddział w Poznaniu.
 
3.
Cisło-Lesicka, U., Mróz, M., Mleczko, M. 2020. Dane satelitarne dla administracji publicznej. [Satellite Data for Public Administration]. Warszawa: Polska Agencja Kosmiczna.
 
4.
Dygaszewicz, J. 2019. Wrota Statystyki. [Statistics Gateway]. Warszawa: Główny Urząd Statystyczny.
 
5.
European Space Agency. 2012. Sentinel-1: ESA's Radar Observatory Mission for GMES Operational Services. AG Noordwijk: ESA Communications.
 
6.
European Space Agency. 2012. Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. AG Noordwijk: ESA Communications.
 
7.
Lee, J. S., Pottier, E. 2009. Polarimetric Radar Imaging: From Basics to Applications. CRC Press Taylor & Francis Group.
 
8.
Lila, B., Kapelewski, J. 2009. Symulacja procesu polarymetrycznej klasyfikacji obiektów realizowanego metodą dekompozycji. [Simulation of the Polarimetric Object Classification Process Using Decomposition Method]. Biuletyn WAT, 59–66.
 
9.
Lillesand, T. M., Kiefer, R. W., Chipman, J. W. 2015. Remote Sensing and Image Interpretation. John Wiley & Sons.
 
10.
Mleczko, M. 2014. Klasyfikacja treści polarymetrycznych obrazów radarowych z wykorzystaniem metod dekompozycji na przykładzie systemu F-SAR (X/S). [Classification of Polarimetric Radar Image Content Using Decomposition Methods – Case Study of F-SAR (X/S) System]. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 97–106.
 
11.
Mleczko, M., Woźniak, E., Slesiński, P., Milewski, T., Łączyński, A., Miziołek, D., Bojanowski, J. 2022. Satelitarne rozpoznawanie upraw i szacowanie ich powierzchni w ramach systemu SATMIROL. [Satellite Crop Recognition and Area Estimation within the SATMIROL System]. Wiadomości Statystyczne. The Polish Statistician.
 
12.
Nasirzadehdizaji, R., Sanli, F. B., Abdikan, S., Cakir, Z., Sekertekin, A., Ustuner, M. 2019. Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Science.
 
13.
Richling, A., Solon, J., Macias, A., Balon, J., Borzykowski, J., Kistowski, M. 2021. Regionalna geografia fizyczna Polski. [Regional Physical Geography of Poland]. Poznań: Bogucki Wydawnictwo Naukowe.
 
14.
Suchecka, J. 2014. Statystyka przestrzenna. Metody analiz struktur przestrzennych. [Spatial Statistics. Methods of Spatial Structure Analysis]. Warszawa: C.H. Beck.
 
15.
Urząd Gminy Panki. 2022. Raport o stanie gminy Panki. [Report on the State of the Panki Commune]. Panki: Urząd Gminy Panki.
 
16.
Woźniak, E., Rybicki, M., Kofman, W., Aleksandrowicz, S., Wojtkowski, C., Lewiński, S., Łączyński, A. 2022. Multi-temporal phenological indices derived from time series Sentinel-1 images to country-wide crop classification. International Journal of Applied Earth Observations and Geoinformation.
 
17.
Zawadzki, S. 1999. Gleboznawstwo. [Soil Science]. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne.
 
eISSN:2450-8594
ISSN:2080-5187
Journals System - logo
Scroll to top