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A b s t r a c t  

Multispectral remote sensing has been widely used in surface water studies, including detection and monitoring of 

surface water dynamics, vegetation water content, peatland and wetland conditions, and soil moisture. Conversely, 

there is a limited number of research contributions on the potential applications of radar remote sensing and 

interferometric coherence in soil moisture monitoring. Addressing this gap, this study aims to investigate the 

relationship between radar data and selected spectral indices, with the purpose of joint monitoring of soil moisture 

changes. Furthermore, a quality index allowing for an a-priori assessment of the applicability of this combined 

methodology is proposed. The analysis is based on open access imagery acquired between 2019 and 2023 by ESA 

Copernicus Sentinel-1 and Sentinel-2 missions. The study focuses on two case study sites in Italy and Poland. The 

results indicate a significant correlation (0.70) between the two remote sensing datasets, highlighting the potential 

use of SAR coherence in soil moisture studies with both a stand-alone and a joint procedure. 

Keywords: vegetation, DInSAR, coherence, remote sensing, spatial statistics 

1. INTRODUCTION 

Remote sensing has been widely used for the monitoring of various environmental components. Passive 

sensors usually provide data regarding the surface in the visible (VIS) and infrared (IR) range of the 

spectrum, while active sensors operate in radio and microwave frequencies. Depending on the 

wavelength, the signal can penetrate through the vegetation and the shallowest layers of the soil. The 

longer the wavelength, the deeper the penetration. However, this causes more noise (e.g., double bounce 

scattering, strongly enhanced volume scattering) [1, 2]. On the contrary to passive images, radar data 
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are not affected by lighting conditions and meteorological factors such as snow and clouds. Thus, radar 

data could augment multispectral imagery in environmental studies. 

Analysis of surface water dynamics using remote sensing has been subjected to a number or 

studies, including monitoring of drought [3], flooding [4], waterlogging [5-7], peat and wetlands [8, 9], 

soil moisture [10-13], and temporal changes in surface water area [14, 15]. Monitoring soil moisture 

based solely on remote sensing techniques poses challenges as acquired data refer only to the surface. 

Therefore, the contributions to soil moisture studies include in situ data of soil moisture [10-13, 16-18] 

for validation and verification. To enhance monitoring, data from various sensors and sources have been 

used [6]. In [10, 11, 13, 17, 18] data from multispectral and radar satellites were combined with in situ 

soil moisture measurements. Additionally, land cover classification was used in [6, 13]. 

Passive satellite missions such as Sentinel-2 or Landsat, provide open access to multispectral 

imagery that is used to calculate spectral indices aimed at highlighting selected elements of the 

environment. Water has moderate reflection in the visible (VIS, 400-700 nm) light region and strong 

absorption in short-wavelength infrared (SWIR, 1300-2500 nm). Plants with a higher water content tend 

to have lower reflectance in SWIR. Near infrared (NIR, 700-1300 nm) and SWIR have been used in 

studies of vegetation water content and soil moisture [19, 20]. The spectral signature of green vegetation 

shows great absorption in the VIS region and reflection in NIR [21]. Thus, analysis of vegetation 

condition can be used as an indirect method to monitor changes in surface water dynamics, as such 

changes affect plants causing water stress [22]. Information on soil moisture can be derived using the 

Soil Moisture Monitoring Index (SMMI) based on spectral reflectance in NIR and SWIR [23]. The 

SMMI was used to study mining subsidence, as due to mining activities, groundwater table sinks as a 

result of drainage from mining activities or is restored after end of mining, filling the subsidence basin 

[23].  

Sentinel-1 backscatter, Normalized Difference Vegetation Index (NDVI), and Land Surface 

Temperature (LST) were used to investigate waterlogging in sugarcane yields [5]. In [24] the 

relationship between soil moisture and LST was pointed out, as the estimation of soil moisture requires 

a priori specification of LST, and vice versa. Spectral indices such as the NDVI, Normalized Difference 

Moisture Index (NDMI) or Normalized Difference Water Index (NDWI) were used in the assessment 

of waterlogging hazard [25] and in the development of vegetation distribution maps for the needs of 

flood mapping [4]. In studies [26, 27], a model was proposed for estimating soil moisture using a 

scatterplot of transformed SWIR reflectance and a vegetation index, such as NDVI. In [25] NDWI and 

the automated water extraction index (AWEI) were used to improve the analysis on dates when there 

was no radar data acquisition. Remote sensing data were analyzed together with topography derived 

from Digital Elevation Model (DEM) in [4, 25] or with Corine land cover in [13].  

In addition to optical satellite imagery, Synthetic Aperture Radar (SAR) images are used for the 

analysis of soil moisture and surface water dynamics. It can be derived from the intensity of the 

backscatter [11, 13, 18, 28] or coherence, as changes in soil moisture influence the dielectric constant 

of the soil and, as a result, alter the refraction angle [29]. In [21] the differences between soil moisture 

estimation using coherence from C-band and L-band SAR imagery were discussed. The C-band data 

provide information on the top 5 cm level of the soil, while the L-band data provide deeper penetration 

and are less sensitive to temporal changes in vegetation. Therefore, they are less prone to temporal 

decorrelation [30]. However, C-band images have higher spatial resolution compared to L-band images. 

In [10], soil moisture information was retrieved using data from Sentinel-1 and Sentinel-2, and the 

quality of the estimates was assessed across various crop types. Noteworthy, the retrieval of soil 

moisture from SAR data depends on the incidence angle, as the estimation is more accurate at lower 

angles [31]. The greater the incidence angle, the higher the risk of estimation errors. Another factor that 

affects the analysis is polarization [18]. The VV polarization was proven to have better precision in 
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estimating soil moisture than the VH polarization. In [32], authors studied seasonality in the intensity 

and coherence of the SAR signal, and their link to seasonal changes in soil moisture and vegetation in 

peat. The intensity of the signal increases in the wet seasons, while coherence exhibits a negative 

correlation with changes in soil moisture. Sub-daily soil moisture variations using ground-based SAR 

sensors were studied in [33] in order to analyze the sources of decorrelation. The coherence varied 

depending on the soil moisture level, temperature, and daily vegetation cycle. 

So far there are limited reports in the scientific literature on the potential application of SAR 

interferometric coherence in studies on soil moisture monitoring. Therefore, the purpose of this study is 

to investigate the relationship between selected spectral indices and SAR coherence. The findings of 

this analysis will allow to assess the potential use of radar data as complement to multispectral data, 

allowing for a comprehensive monitoring of soil moisture. Moreover, the joint use of data acquired by 

different sensors increases the number of observations in the time domain. 

Additionally, this work will provide a quality index allowing for an a-priori assessment of the 

application of the joint methodology. 

2. MATERIALS 

The proposed workflow is tested in two different areas of interest (AOIs). The AOIs were selected in a 

way to test the methodology in areas of different characteristics, influence of industrial activity, as well 

as size and complexity, and thus check whether it can be successfully applied in various environments. 

2.1. Areas of interest 

The study is carried out in two specific areas selected because of their different environmental 

characteristics described below. The first AOI is an Underground Gas Storage (UGS) facility in Poland, 

while the second AOI represents an earth-filled dam on Arvo Lake in Italy. 

 The first AOI is a UGS facility located in Kosakowo, northern Poland at 54°36’22’’ N and 

18°27’15’’ E (Fig. 1). The facility is used for storage of natural gas, which is kept in clusters of 5 caverns 

each, with a maximum storage volume of 295 million m³. They have been in operation since 2014. The 

storage caverns were constructed within the Permian Mechelinki rock salt deposit, which lies in the 

western part of the Peribaltic Syneclise [34]. The average thickness of the deposit is 170 m. The deposit 

lies at a depth of approximately 970 m below ground level. The geology of the region is mainly peat. 

The area above the Mechelinki salt deposit is located at an average altitude of 3 m above sea level, and 

in the basin of the Baltic Sea. Due to the given geological and topographic conditions, the area is 

susceptible to waterlogging. 

The dam is located on the Arvo Lake in Calabria, southern Italy at 39°14’45’’ N and 16°32’45’’ 

E (Fig. 2). It is a critical infrastructure for the region as it ensures water supply throughout the year, for 

both agricultural and household use. The dam is located at an altitude of 1278 m above sea level. It is 

27 m high and 280 m long. It is made of clay and compact soil. At the time of construction, it was the 

largest dam in Italy. The work began in 1926 with landscape transformation and earth mass displacement 

to create the dam and an underground tunnel for water adduction from the Ampollino lake. The tunnel 

has a length of slightly more than 6 km. The realization of the dam was possible due to the characteristics 

of the reservoir, which was less steep than other silane basins, and thus exerted less pressure on the dam 

itself. The Arvo Lake, which was created as a consequence of the barrage, has an area of 8 km2 and 

capacity of 82 million m3. Together with the Ampollino lake, they provide water to the Timpagrande 

hydroelectric power plant. The reservoir is supplied with water from 7 rivers: Arvo, Capalbo, Melillo, 

Cavaliere, Pugliese, Rovalicchio, and the underground tunnel from the lake Ampollino. 
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Fig. 1. Location of the underground gas storage facility in Kosakowo, Poland 

 
Fig. 2. Location of the Nocelle Dam on Arvo Lake, Italy 

2.2. Materials 

In this study, two types of satellite remote sensing data were used, namely multispectral and radar 

imagery from the European Space Agency (ESA) Copernicus satellites.  
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Radar data were acquired by Sentinel-1. For the study, the images were downloaded from the 

Alaska Satellite Facility (ASF) Data Search Vertex (https://search.asf.alaska.edu/) that contains the 

complete Copernicus imagery catalogue. Level 1 (L1) Single Look Complex (SLC) Interferometric 

Wide-swath (IW) products were selected for the analysis. The IW SLC product is provided with one 

image per sub-swath and per polarization channel, for a total of three or six images. Each sub-swath 

image consists of a series of bursts, where each burst was processed as a separate SLC image. The 

individually focused complex burst images are included, in azimuth-time order, into a single sub-swath 

image, with black-fill demarcation in between. The images for all bursts in all sub-swaths of an IW SLC 

product are re-sampled to a common pixel spacing grid in range and azimuth [35]. For both study sites, 

imagery from ascending (ASC) and descending (DSC) tracks were selected (Table 1). 

Table 1. Available radar images selected for analysis in both AOI 

Area of 

Interest 
Nocelle Dam, Italy Kosakowo UGS, Poland 

Period July 2019 – June 2023 March 2019 – November 2023 

Orbit Ascending Descending Ascending Descending 

Track A146 D51 A102 A175 D22 D124 

Number of 

images 
187 184 217 189 213 205 

Master epoch 04/06/2021 04/06/2021 13/06/2021 18/06/2021 14/06/2021 15/06/2021 

The DEMs were downloaded for both AOIs. The DEM for the Italian AOI was downloaded from 

the regional Geoportal (http://geoportale.regione.calabria.it/opendata, accessed: 01/10/2024). A 5x5 m 

GRID model was selected for the study. It was created based on the results of the photogrammetric 

Calabria 2007-2008 campaign. The DEM for the Polish AOI was downloaded from the national 

Geoportal (https://mapy.geoportal.gov.pl/, accessed: 01/10/2024). Similarly to the Italian AOI, a 5x5 m 

GRID model was selected for the study, which is created based on the stereoscopic measurements made 

during the production of ortophotomosaics with pixel size of 25 cm. 

3. METHODS 

The processing was performed using Google Earth Engine [36] through the Python API, Python (version 

3.12.2) and Matlab (version 2023b). The methodology adopted in our study consists of 4 main steps 

depicted in Fig. 3. 
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Fig. 3. Overview of the processing workflow for joint analysis of radar and optical data in soil moisture 

monitoring 

3.1. Sentinel-1 processing 

Radar imagery was processed using SNAP libraries through the PHASE software [37, 38]. To compute 

coherence (𝛾), which is a measure of similarity between two images, the master epoch for processing 

was determined. A date in the middle of the study period was selected for each of the tracks to reduce 

temporal decorrelation (Table 1) [39]. Then, the images were split by selecting the swath and burst(s) 

of interest. Precise orbit corrections were applied to the products. After that, image pairs of the master 

and slave dates were coregistered. For each pair, an interferogram was computed and coherence was 

estimated (Eq. 3.1) [40], which represents the correlation between two complex SAR images [41]. 
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γ(𝑟, 𝑐) =
1

𝑁

|∑ 𝐼1(𝑟′, 𝑐′)𝐼2
∗(𝑟′, 𝑐′)𝑟′,𝑐′∈𝑊(𝑟,𝑐) |

√∑ |𝐼1(𝑟′, 𝑐′)|2
𝑟′,𝑐′∈𝑊(𝑟,𝑐) ∗ ∑ |𝐼2(𝑟′, 𝑐′)|2

𝑟′,𝑐′∈𝑊(𝑟,𝑐)

 (3.1) 

Where: 

𝐼1, 𝐼2 – images with R rows and C columns (they are the upper limits of the summations that are not 

reported in the formula for the sake of clarity),  

𝐼2
∗ – complex conjugate of 𝐼1, 

𝑊(𝑟, 𝑐) – sliding window centered in the pixel with row r and column c, where the coherence is 

evaluated, 

𝑟′, 𝑐′ – rows and columns of pixels inside the sliding window, 

𝑁 – total number of pixels in the window. 

The coherence was estimated with a sliding window of 2 pixels in azimuth (rows) and 10 pixels 

in range (columns). The final coherence value in each pixel is therefore an average of the coherence in 

all pixels inside the window. To convert the image from azimuth and range to projected coordinates 

[42], the so-called terrain correction was applied. 

3.2. Sentinel-2 processing 

The multispectral optical images of Sentinel-2 were accessed through the Google Earth Engine Data 

Catalog. The removal of clouds and cloud shadows was carried out using the s2cloudless algorithm [43].  

The vegetation vigor and surface water dynamics, namely soil moisture changes and temporal 

occurrence of water in form of waterlogging, were analyzed using selected spectral indices derived from 

multispectral images. Each surface has specific reflectance properties that allow it to be identified based 

on the reflectance in visible and infrared parts of the spectra. NIR and SWIR spectra are of particular 

use, as they provide information about vigor and water content. SWIR is also suitable for the analysis 

of soil moisture. In this study, several commonly used indices to assess vegetation, soil moisture, and 

surface water dynamics, were computed (Table 2). Additionally, the Normalized Difference Built-up 

Index (NDBI) was selected to extract built-up features from the images. 

Table 2. Spectral indices selected for the study. Band lengths used in the formulas: Blue 492 nm, Green 560 nm, 

Red 665 nm, NIR 842 nm, SWIR 1610 nm, SWIR2 2190 nm 

 Name Formula Purpose Source 

S
u

rf
ac

e 
w

at
er

 

Automated 

Water 

Extraction 

Index 

(shadow) 

𝐴𝑊𝐸𝐼𝑠ℎ = 𝐵𝐿𝑢𝑒 + 2.5 ∗ 𝐺𝑟𝑒𝑒𝑛 −

1.5 ∗ (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅) − 0.25 ∗ 𝑆𝑊𝐼𝑅2 (3.2)
 

Extraction of surface 

water bodies in urban 

areas. It eliminates 

shadows and dark 

features (urban 

shadow, mountains). [44] 

Automated 

Water 

Extraction 

Index (no 

shadow) 

𝐴𝑊𝐸𝐼𝑛𝑠ℎ = 4 ∗ (𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅) −

(0.25 ∗ 𝑁𝐼𝑅 + 2.75 ∗ 𝑆𝑊𝐼𝑅2) (3.3)
 

Extraction of surface 

water bodies in urban 

areas. It is preferred in 

areas with no shadow 

present. 

S
u

rf
ac

e 

w
at

er
 Normalized 

Difference 

Water Index 
𝑁𝐷𝑊𝐼 =

𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 (3.4) 

Detection of surface 

water. 
[45] 
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 Name Formula Purpose Source 

Modified 

Normalized 

Difference 

Water Index 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 (3.5) 

Detection of surface 

water. It is based on 

the NDWI, but the 

NIR was substituted 

with SWIR to remove 

the built-up areas 

noise. 

[46] 

V
eg

et
at

io
n

 

Normalized 

Moisture 

Index 
𝑁𝐷𝑀𝐼 =

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 (3.6) 

Assessment of canopy 

water content. Flood 

and drought detection. 

[47] 

Normalized 

Difference 

Vegetation 

Index 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (3.7) 

Assessment of 

vegetation vigor. 
[48] 

S
o

il
 

m
o

is
tu

re
 Soil 

Moisture 

Monitoring 

Index 

𝑆𝑀𝑀𝐼 =
√𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

√2
 (3.8) 

Assessment of soil 

moisture. 
[23] 

B
u

il
t-

u
p

 Normalized 

Difference 

Built-Up 

Index 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 (3.9) 

Mapping 

built-up 

areas. 

   [49] 

The SMMI index was normalized according to the following formula: 

𝑆𝑀𝑀𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
𝑆𝑀𝑀𝐼 − 𝑆𝑀𝑀𝐼𝑚𝑖𝑛

𝑆𝑀𝑀𝐼𝑚𝑎𝑥 − 𝑆𝑀𝑀𝐼𝑚𝑖𝑛
 (3.10) 

where: 

𝑆𝑀𝑀𝐼𝑚𝑖𝑛 – minimum value of SMMI,  

𝑆𝑀𝑀𝐼𝑚𝑎𝑥– maximum value of SMMI. 

3.3. Sentinel-1 and Sentinel-2 joint processing 

Images were exported as geoTIFF rasters and then merged into a netCDF file, allowing further 

processing using Python. 

To analyze multisensor data together, they must be uniform in time and space. The coherence 

images were upsampled using bilinear interpolation to match the spatial resolution of Sentinel-2 (10 m). 

Since coherence is a relative product, the spectral indices values were also differentiated with respect to 

the closest date to the epoch of the master image used in InSAR processing. To investigate the 

relationship between coherence and selected spectral indices, the images from both sensors were 

organized into pairs according to the acquisition date (allowable maximum difference of 1 day) (Table 

3). 
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Table 3. Number of Sentinel-1 and Sentinel-2 image pairs 

Area of 

Interest 
Nocelle Dam, Italy Kosakowo UGS, Poland 

Period July 2019 – June 2023 March 2019 – November 2023 

Orbit Ascending Descending Ascending Descending 

Track 146 51 102 175 22 124 

Number of 

image pairs 
23 24 9 16 28 22 

3.4.Statistical analysis 

To investigate the correlation between SAR coherence and each of the selected multispectral indices, 

multiple scatter plots were created. Linear regression analysis was performed using the least squares 

method considering all the pixels within the AOI and replicating the procedure across all epochs and for 

all indices. The linear correlation coefficient was computed to numerically quantify the correlation level. 

After that, all linear correlation coefficient values were put together in the same graph to show 

the correlation between SAR coherence and spectral indices as a function of time, identifying possible 

patterns. In addition to that, for each date and index, standard deviation of the residuals (Eq. 3.11) was 

computed to quantify the prediction error of the linear regression. The aim was to indicate the reliability 

of the slope estimate. 

𝜎𝑟𝑒𝑠 = √
1

𝑁 − 2
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

 (3.11) 

Where: 

N – number of observations, 

𝑦𝑖 – observed value of the indicator, 

𝑦�̂� - estimated value of the indicator from InSAR coherence via linear regression. 

Moreover, all pixels were processed separately to investigate the temporal variation of the linear 

correlation between SAR coherence and selected multispectral indices. Therefore, for each pixel, the 

linear correlation coefficient was obtained. Finally, a threshold was applied to the obtained correlation 

maps to identify significant pixels, namely pixels exhibiting an absolute value of the linear correlation 

coefficient above the threshold of 0.35. The threshold value was selected based on the distribution of 

the obtained spatiotemporal correlation and its standard deviation. 

3.5.Quality Index development 

An index was proposed to a priori assess the likelihood of the correlation between SAR coherence and 

spectral indices. This quality index (Qindex) is based on two types of remotely sensed data. The first group 

relies on radar contributions, such as the local incidence angle, the layover, and the shadow computed 

from the slope and the aspect derived from DEM. As the quality of soil moisture estimation depends on 

the incidence angle and the sensing geometry, the contribution of SAR to the overall quality index was 

considered significant. The second part of the formula includes the basic classification of land cover 

based on spectral indices. Certain threshold values were selected to distinguish vegetation, surface water, 

and built-up areas. The threshold values used in the study are given in Table 4. Then, weights were 

assigned to each of the described elements. Areas with dense vegetation were assigned lower weights 
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because such areas provide poor interferometric coherence and, thus, low quality. The final index was 

created using the conditions stated in 3.12, 3.13 and formulae 3.14-17. 

𝐿𝑜 = {
−1    𝑖𝑓    cos(𝐴 − 𝜃) ≥ tan(𝑆)

1    𝑖𝑓    cos(𝐴 − 𝜃) < tan(𝑆)
(3.12) 

𝑆ℎ = {
−1    𝑖𝑓    S ≥ LIA
1    𝑖𝑓    𝑆 < 𝐿𝐼𝐴

(3.13) 

𝐶𝑑 = cos(𝐿𝐼𝐴 − 𝐴) (3.14) 

Where:  

Lo – layover,  

A – aspect,   

𝜃 – azimuth, 

S – slope,  

Sh – shadow,  

LIA – local incidence angle,  

Cd – cosine of angle difference. 

 

The quality index for radar data, which ranges from -1 to 1, is: 

𝑄𝑖𝑛𝑑𝑒𝑥,𝑆−1 = 𝐶𝑑 ∗ 𝑤𝐶𝑑 − 𝐿 ∗ 𝑤𝐿𝑜 − 𝑆ℎ ∗ 𝑤𝑆ℎ  (3.15) 

The quality index for optical contributions, which ranges from -1 to 1, is: 

𝑄𝑖𝑛𝑑𝑒𝑥,𝑆−2 = 𝑄𝑁𝐷𝑊𝐼 ∗ 𝑤𝑁𝐷𝑊𝐼 + 𝑄𝑁𝐷𝑉𝐼 ∗ 𝑤𝑁𝐷𝑉𝐼 + 𝑄𝑁𝐷𝑀𝐼 ∗ 𝑤𝑁𝐷𝑀𝐼 + 𝑄𝑁𝐷𝐵𝐼 ∗ 𝑤𝑁𝐷𝐵𝐼 (3.16) 

The final quality index: 

𝑄𝑖𝑛𝑑𝑒𝑥 = 𝑄𝑖𝑛𝑑𝑒𝑥,𝑆−1 ∗ 𝑤𝑆−1 + 𝑄𝑖𝑛𝑑𝑒𝑥,𝑆−2 ∗ 𝑤𝑆−2 (3.17) 

The QIndex was rescaled so the values range from 0 to 1, to make the interpretation easier. Weights 

in Table 4 were empirically calibrated based on a training set and iteratively modified to obtain optimal 

results with respect to the expected outcome. 

 

Table 4. Parameters used in the quality index with assigned weights. Nested levels refer to the constitutive 

contributions used to create the index, e.g., for Sentinel-2 (Level 1) four indices (Level 2) are considered and each 

of them is classified based on threshold values (Level 3). Each parameter has an assigned weight 

Parameters Weights 

Level 1 Level 2 Level 3 Level 3 Level 2 Level 1 

Sentinel-1 

Cd - - 0.70 

0.60 Lo - - 0.15 

Sh - - 0.15 

Sentinel-2 
NDWI 

 

< -0.3 0.15 

0.30 0.40 
-0.3 – 0.0 0.55 

0.0 – 0.2 0.15 

> 0.2 0.15 
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Parameters Weights 

Level 1 Level 2 Level 3 Level 3 Level 2 Level 1 

NDVI 

 

< 0.2 0.70 

0.30 0.2 – 0.5 0.25 

> 0.5 0.05 

NDBI 
< 0.0 0.10 

0.20 
≥ 0.0 0.90 

NDMI 

< -0.2 0.70 

0.20 
-0.2 – 0.0 0.20 

0.0 – 0.2 0.05 

> 0.2 0.05 

3.6. Validation of the quality index 

The validation of a newly developed index is crucial to ensure its effectiveness and alignment with the 

intended purpose. In the context of this study, this process was performed according to the following 

steps. Pixels were divided based on their QIndex value, distinguishing between high quality (above 0.70) 

and low quality (below 0.50). Then, linear regression was performed, considering multispectral-derived 

SMMI as response and SAR coherence as predictor. The coefficients of the single-variable linear 

regression were estimated using least squares compensation (e.g., mean value and angular coefficient 

for the SAR coherence). On both estimated parameters a t-test to estimate their significance was done. 

If the empirical t-value was smaller than the t-limit value, the parameter was deemed as non-significant 

and therefore removed; another iteration of the least squares solution would therefore be required on the 

reduced model. Additionally, the normalized root mean square error (NRMSE) was computed to 

quantify the error level. 

4. RESULTS 

4.1. Time series of correlation between SAR coherence and MS indices 

The MS indices were computed for all images available within the analysis period, but the correlation 

with SAR coherence was investigated only for image pairs (Table 3). The correlation between SAR 

coherence estimated from images of both ascending and descending tracks was checked. Additionally, 

two variants of signal polarization, namely vertical-vertical (VV) and vertical-horizontal (VH), were 

considered. As a result, the ASC track 146 in VV polarization was selected for the Nocelle Dam, while 

for the Kosakowo UGS the DSC 22 in VV polarization, provided the optimal output. The temporal 

profile of average correlation values and the standard deviations are shown in Fig. 4 and Fig. 5, for the 

Nocelle Dam and Kosakowo UGS, respectively. The automated water extraction indexes and the 

MNDWI were rejected due to a highly dispersed distribution of values in the study areas. Their time 

series differed significantly from the remaining indices. 
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Fig. 4. Average correlation between MS indices and SAR coherence from ASC track 146 with standard 

deviations in the Nocelle Dam area 

 

Fig. 5. Average correlation between MS indices and SAR coherence from DSC track 22 with standard deviations 

in the Kosakowo UGS area 

A similar temporal pattern is observed in both AOIs but at different magnitudes. The dam within 

the Italian AOI is a smaller structure compared to the second AOI. Furthermore, the land cover is more 

homogeneous in that area, since the downstream face of the dam is covered with grass and the other side 

is made of stones and concrete. In general, a strong relationship between the selected indices and SAR 

image coherence can be observed at the site. The study region in Poland is more diverse, since it includes 

roads, crops, forests, and built infrastructure, which is reflected in the average values of the multispectral 

indices and generally a lower correlation with coherence. Fig 6. shows the linear correlation for all 

considered multispectral indices, across both AOIs. The estimated linear regression line passes very 

close to the scatter points, further confirming the similarity pattern observed for the Italian and Polish 

sites. 



210 Aleksandra KACZMAREK, Roberto MONTI, Mirko REGUZZONI, Jan BLACHOWSKI 

 
 

 
Fig. 6. Visualization of the linear correlation for all indices across the two AOIs 

Two groups of multispectral indices are identified. The first group exhibits a positive correlation 

with the coherence. The NDWI is used to delineate surface water bodies, while the NDBI is used to 

extract built-up features. The built-up infrastructure has positive NDBI values [49], has high stable 

backscattering, and high stability over time [50]. On the other hand, the indices used in vegetation and 

soil moisture studies show a negative relationship with coherence. A strong correlation is observed for 

NDVI, as the correlation drops to -0.75 in the dam and -0.40 in the UGS site. Little or no consistency 

can be found in densely vegetated regions. Inverse temporal patterns can be observed between the two 

groups. The temporal interval between consecutive image pairs is not equal; thus, winter periods are 

smoothed because of the lack of clear Sentinel-2 images. The correlation was also plotted separately for 

all indices and dates (Fig. 7, 8). A linear trend was fitted to each of the images. Both NDWI and NDBI 

have positive correlation with values during winter lower (image acquired on 01/12/2019) than in Spring 

and Autumn. Indices used for assessment of vegetation, vegetation water content, and soil moisture have 

a negative impact on the interferometric coherence, which is confirmed by negative correlation. For the 

Kosakowo UGS site, the correlation is lower, and the scatterplots are more random. No significant 

pattern within a single image can be clearly identified.  
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Fig. 7. Scatterplots of SAR coherence (ASC track 146) and MS indices in Nocelle dam on 3 consecutive dates 

 
Fig. 8. Scatterplots of SAR coherence (DSC track 22) and MS indices in Kosakowo UGS on 3 consecutive dates 
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The pixel-wise correlation coefficient values for the Nocelle dam are shown in Fig. 9. According 

to previous results, two types of correlation are identified based on the multispectral index used. The 

pixels were classified into areas of positive, negative, or no correlation. In all investigated cases, clusters 

of pixels with significant correlation were identified in the central part of the dam. 

 
Fig. 9. Correlation coefficients between multispectral indices observed in the Nocelle Dam AOI 

The pixel-wise linear correlation coefficient shown in the first row of images of Fig. 9 required 

estimation of both slope and intercept of the regression line. This allows us to create maps showing the 

value of these two quantities for each (significant) pixel, as well as the least squares interpolation result. 

Fig 10. provides, as an example, the case of the SMMI. 

 
Fig. 10. Slope and intercept of linear regression between SAR coherence and SMMI, together with a regression 

line example for a randomly selected pixel 

4.2. Development of the quality index 

Based on the observed characteristics of both study areas, further analysis was limited to the Nocelle 

Dam as it exhibited higher linear correlation between the investigated factors.  
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The quality index was built using radar and optical data. Radar images have different viewing 

geometry depending on the interaction between the SAR line of sight and the surface orientation, thus 

having a crucial impact on the quality of radar interferometry processing. A cosine of difference between 

the local incidence angle and aspect highlights areas with optimal sensing potential. The dam is divided 

by its crown into two clusters (Fig. 11). The grass-covered downstream face side has favorable 

conditions for InSAR monitoring, while the water-facing side is limited by shadow. 

 
Fig. 11. Cosine of the difference between the local incidence angle and the aspect for the ascending (left) and 

descending (right) tracks 

To define the classes using multispectral indices, the reference image was selected for clustering. 

All pixels within the AOI were divided into several groups according to their values. The classification 

was performed manually to minimize the complexity of the workflow. The NDBI image was divided 

into two classes. Positive values correspond to built-up features, and negative values represent non-built 

areas [49]. Due to the stability of the backscatter of urban areas over time, built-up areas are desired in 

InSAR processing. For the sake of brevity, classification based on only one index is presented in the 

study. The NDVI was used to extract areas of no vegetation, moderate and dense vegetation (Fig. 12). 

The concrete wall of the dam was correctly identified as a non-vegetated area, while the grass-covered 

wall had NDVI values exceeding 0.5. 

 
Fig. 12. Pixel classification based on NDVI values. The area is divided into no vegetation (left), low vegetation 

(center), and high vegetation (right) 
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The NDMI was split into 4 classes. Bare soil and low canopy values are represented by values 

lower than -0.2. The next group represents areas with low canopy under water stress. Values between 0 

and 0.2 correspond to a higher canopy under water stress. Positive values represent healthy vegetation, 

but extreme values may indicate waterlogging. Water features were extracted using NDWI. Values from 

-1 to 0 correspond to drought and nonaqueous structures; pixels with values below 0.2 are humid or 

experience floods. All values above 0.2 correspond to surface water. However, it may vary due to the 

sediments present in the water. Dry, bare, and built areas are preferred in case of InSAR processing, as 

vegetation and water are sources of coherence loss. The quality index (Eq. 3.17) was calculated for both 

SAR tracks to compare the influence of the acquisition geometry (Fig. 13). Each pixel has a value in the 

range from -1 to 1, where positive values represent areas of high potential. The results are strongly 

dependent on the radar contributions. The dam is divided into two groups reflecting its sides. The highest 

quality is expected at the crowning, while the poorest results are expected to be observed on the water-

facing side. This was confirmed in preliminary studies, since no persistent scatterers were found in that 

area, even considering its good backscattering properties. 

 
Fig. 13. Quality index for ascending (left) and descending (right) tracks – Nocelle dam 

The radar contributions to the quality index are independent of time, as they represent a function 

of the relative geometry between the satellite and the surface of the AOI. On the contrary, multispectral 

contributions are time dependent as the indices are created based on the acquired soil conditions. 

Therefore, the quality index is not time invariant. However, if the AOI does not undergo major changes 

or environmental phenomena during the analysis period, the value of the Qindex is not expected to change 

significantly. 

In order to ensure conciseness, the validation step is shown for just two pixels, representative for 

high and low quality, respectively (Fig. 14). The most relevant outcome that emerges is that when good 

quality is predicted by the QIndex, the SAR coherence parameters of the linear regression are significantly 

different from zero (e.g., the H0 hypothesis of being statistically equal to zero is rejected). Conversely, 

when low quality is expected, the mean represents the best possible prediction, being little to no 

meaningful to the overall SMMI time series. The NRMSE value, instead, is more complicated to be 

interpreted as the SMMI values were normalized, and thus, the variability is limited to the range from 0 

to 1. Larger values for pixels of poor quality are expected and obtained in most cases, but with 

discrepancies that can change based on the SMMI variability range of each pixel. As a consequence, we 

can state that the obtained results provide a successful validation of the proposed quality index. 
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Fig. 14. Linear regression prediction of SMMI using SAR coherence data for a pixel showing high Qindex value 

and for one showing low Qindex value – Nocelle dam, track A146 

5. DISCUSSION 

The aim of the analysis was to explore the relationship between various products derived from radar and 

optical remote sensing satellites and to investigate their potential in monitoring soil moisture. Previous 

studies exploited mainly SAR backscatter intensity for this purpose. Radar images are combined with a 

single multispectral index such as NDVI [11, 18], NDMI [51] or NDWI [25]. This study analyzed more 

indices based on reflectance in various spectral bands to see whether some are more consistent with 

SAR coherence. The relationship between interferometric coherence and multispectral indices is 

intricate and linear regression models appear to be a suitable initial approach. However, more 

sophisticated relationship models, even machine learning (ML) algorithms, may be necessary to 

accurately model how alterations in environmental conditions impact both MS indices and SAR 

coherence. Soil moisture, as well as vegetation, undergo seasonal changes that can be observed in the 

temporal profiles of the selected MS indices. In the study [28], a strong relationship between SAR-

derived soil moisture and annual precipitation records was discovered. The observed variations were 

following the seasonal patterns. Similar behavior is observed in temporal plots of correlation in both 

AOIs (Figs. 4, 5). Soil moisture changes not only throughout the season following its annual cycle [32], 

but also on a sub-daily basis [33]. Satellite images are acquired at the same time of day, thus computed 

indices shall be free from sub-daily variations. Several indices were used because the application of a 

single one is not robust and may lead to misinterpretation. For example, NDWI is insensitive to 

distinguish between water and built-up features [50]. Another factor that may have a significant impact 

on the quality of the analysis is the size of the AOI. The Italian and Polish sites differ in both extent and 

land cover homogeneity. The dam is more uniform in terms of land cover classes and within each of the 

classes. The vegetated area is mainly covered with grass. As it was presented in [10], the quality of soil 

moisture depends on the type of crops, showing that even variability within one land cover class can 

affect the final result in a significant way. In [51] soil moisture content was predicted considering various 

complexities of test areas, from grasslands, shrublands to entire landscapes. In Kosakowo, Poland, the 

AOI is composed of multiple structures, pavements, and fields, covering several square kilometers. 

However, the dam in Italy is a single structure, limited in size. Therefore, subdivision of the Polish AOI 

into smaller, more homogenous units could improve the correlation and help to identify areas of weaker 

and stronger correlation with interferometric coherence. 
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The temporal analysis of the correlation allowed us to identify two groups of indices. The 

vegetation-associated indices exhibit a negative linear relationship with the coherence level. This is 

because vegetation growth and probable movement of leaves and grass due to influence of wind, alter 

the scattering mechanism from one radar acquisition to the next. On the other hand, the water-related 

and built-up indices show a positive linear correlation with SAR coherence. These indices identify areas 

of the built environment that are more likely to maintain stability in backscattering. This is valid, as both 

AOIs do not include surface water reservoirs, which, instead, would have had a negative effect on the 

coherence level. Nevertheless, the temporal profiles of correlation are promising as analogous patterns 

(Fig. 6) can be spotted in both case study areas. The different magnitude of the correlation might be 

caused by the differences in the land cover and size of the two AOIs. As the Italian case site has a smaller 

spatial extent and is more uniform in land cover compared to the Polish AOI, it was selected for testing 

the proposed workflow. 

6. CONCLUSION 

In this study, an in-depth statistical analysis of the relationship between interferometric coherence and 

common multispectral indices for assessment of vegetation condition and surface water changes, with 

the purpose to analyze soil moisture, was conducted. The proposed quality index proved to be effective 

in pinpointing areas where radar coherence and spectral indices show a high correlation, enhancing the 

potential for targeted monitoring of hydrological and vegetation dynamics. While the findings provide 

a foundation, additional variables such as land surface temperature and precipitation, could be 

incorporated to refine the model, offering a deeper understanding of soil moisture variation across 

diverse environmental conditions. However, observed relationships are complex and linear regression 

may be insufficient to describe the dependencies between the analyzed components. More advanced 

machine learning models could be applied to further analyze the results obtained in this study. 

Future research could explore predictive modeling, with the aim of estimating soil moisture from radar 

images, as they are independent of cloud cover. Furthermore, the integration of ground truth data and 

field samples would be essential to validate and refine these findings, paving the way for more accurate 

and reliable soil moisture estimation frameworks. This research provides a promising foundation, with 

considerable implications for advancing remote sensing in soil moisture and surface water dynamics 

monitoring studies. 
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