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A b s t r a c t  

Non-invasive methods for diagnosing conveyor belts enable effective detection of damage, significantly reducing 

the costs associated with belt replacement. Additionally, they allow for continuous monitoring of the belts’ 

technical condition and degree of wear over extended periods of operation. Such solutions also enhance safety in 

environments where conveyor systems are used. While belt wear is an inevitable process, its rate can vary 

depending on specific operational conditions, such as the conveyor’s location, its length, the type of material being 

transported, and the belt’s operating speed. This article discusses an artificial intelligence-based approach to 

classifying conveyor belt damage. A two-layer neural network was implemented in the MATLAB environment 

using the Deep Learning Toolbox. By optimizing the network, a high level of operational efficiency was achieved, 

reaching an accuracy range of 80–90%. This solution opens new possibilities for precise diagnostics and 

monitoring of conveyor belts’ technical state, contributing to improved durability and reduced operational costs. 
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1. INTRODUCTION 

The durability of a conveyor belt is influenced by multiple factors discussed in the literature [1]. These 

include the characteristics of the transported material, the design and conditions of the transfer point, as 

well as the conveyor's length and operational age. Figure 1 illustrates a conveyor belt commonly used 

in mining operations [2]. 
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Fig. 1. Conveyor belt diagram 

The conveyor belt is the most critical and failure-prone component of the system. It is estimated 

that the belt alone constitutes about 60% of the conveyor's total cost [3]. To meet industry standards, 

manufacturers are required to produce high-quality belts, which further increases their expense. This 

underscores the importance of effective diagnostics and prompt detection of potential damage, enabling 

timely repairs before problems worsen. A belt failure results in not only repair expenses but also 

significant costs associated with transport downtime [4]. Figure 2 presents a cross-sectional diagram of 

the conveyor belt. 

 
Fig. 2. Cross-section of a conveyor belt – diagram 

Non-Destructive Testing (NDT) techniques ensure that the examined object—in this case, the 

conveyor belt—remains intact, with no changes to its structure or properties during testing. Researchers 

worldwide have developed numerous systems to diagnose conveyor belt cores [5–10]. Some methods 

focus on assessing the condition of the belt covers, while others are designed to detect damage to the 

steel core embedded in rubber [11]. With the advent of Industry 4.0, sensors can now be integrated into 

the examined object, enabling continuous data collection and advanced processing to enhance the 

diagnostic process [12–13]. 

One innovative method of non-invasive conveyor belt diagnostics involves detecting changes in 

the magnetic field as the belt moves beneath a measurement head spanning its entire width. This 

technology is being tested at the Conveyor Transport Laboratory of the Wrocław University of Science 

and Technology [14–15]. 

Magnetic methods for damage identification work by recording variations in the magnetic field 

generated by pre-magnetized steel cords in the belt’s core. These variations can result from belt segment 

connections or damage such as cuts, corrosion, or missing cords. The technique involves inducing a 

magnetic field with a sufficiently high flux in the belt, then searching for magnetic leakage fields 

indicative of defects. 

To enhance damage detection and optimize the setup of the measurement device (e.g., belt speed, 

sensor distance, sensitivity), analyses were conducted using data from the Diagbelt system [16].  

Data obtained from the Diagbelt system can be visualized in a two-dimensional diagram. An 

example of such visualization is presented in Figure 3. 

 
Fig. 3. Visualization of measurement data in a two-dimensional image 
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1.1. Neural network  

Artificial Neural Networks (ANNs) are a class of computational models inspired by the structure and 

functioning of the human brain. They consist of interconnected processing units (neurons) that transform 

input signals into output responses through a system of weighted connections and nonlinear activation 

functions. The origin of neural networks dates back to early models such as the McCulloch-Pitts neuron 

(1943), while the perceptron model proposed by Rosenblatt in the 1950s laid the foundation for learning 

algorithms [17–18]. Despite a temporary decline in interest due to theoretical limitations identified by 

Minsky and Papert [19], the field saw a resurgence with the introduction of the backpropagation 

algorithm for training multilayer networks [20]. 

The popularity of ANNs in classification tasks stems from their ability to model complex, non-

linear relationships between input and output data, making them effective in pattern recognition, speech 

analysis, image processing, and decision-making systems. Recent advances in deep learning, which 

involves ANNs with many hidden layers, have further expanded their capabilities across various 

scientific and industrial domains [21]. 

In technical diagnostics and non-destructive testing (NDT), neural networks have emerged as 

powerful tools for detecting faults in materials or mechanical systems without causing physical damage. 

Their ability to learn from sensor data enables them to detect patterns that may be imperceptible to 

traditional analysis methods[22]. This includes successful applications in the monitoring of steel 

structures, pipeline corrosion, weld defects, or — as in this work — conveyor belt damage [23–24]. 

An artificial neural network typically consists of several layers: an input layer, one or more hidden 

layers, and an output layer. Each neuron in a layer computes a weighted sum of its inputs and passes the 

result through an activation function. The input layer has as many neurons as there are input features. In 

some implementations, an additional bias neuron is introduced, which always outputs a constant signal. 

The number of neurons in the hidden layer(s) may vary depending on the problem's complexity. The 

output layer’s size corresponds to the number of classification categories or target values. 

Figure 4a shows the structure of a single artificial neuron, which processes multiple inputs and 

generates a single output value. Figure 4b illustrates a simple multilayer network with one hidden layer 

containing 𝑘1 neurons.  

 

 
Fig. 4. Neural network – diagram 

Selecting the number of layers and the number of neurons in each hidden layer is one of the most 

important design decisions when constructing a neural network. In practice, networks with one or two 

hidden layers are usually sufficient for most classification tasks. Deeper networks can capture more 

complex patterns but are harder to train and require more data and computational power. 

Beyond the architecture itself, there are other critical parameters that influence the performance 

of the network. These include the choice of activation functions (e.g., sigmoid, ReLU, tanh), the loss 

function (e.g., mean squared error for regression, cross-entropy for classification), and the optimization 
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algorithm used to minimize the error during training (e.g., stochastic gradient descent, Adam) [17–21]. 

The training process adjusts the weights of the connections between neurons using the backpropagation 

algorithm — a supervised learning technique where the error is propagated backward from the output 

layer to the input layer. Variations of this algorithm, such as those incorporating momentum, can 

accelerate convergence and improve generalization [21]. 

2. PRELIMINARY DATA ANALYSIS 

Before inputting data into the neural network, it is essential to perform preliminary data processing. 

Image processing, presented as values of successive pixels, is primarily handled by deep neural 

networks, which require a large input database for the training process to proceed correctly. An image 

with dimensions of 480 × 600 px presented in the classical version, pixel by pixel, necessitates a network 

structure with 240,000 neurons in the input layer! However, this problem can be circumvented, and 

satisfactory results can be obtained even with a relatively small training database. In the described case 

of detecting damage in conveyor belts, areas in close proximity were isolated with the help of the Python 

programming language. The boundaries of such areas are illustrated in Figure 5. 

 
Fig. 5. Reference conveyor belt - boundaries of potential damage areas 

To avoid inputting the entire data vector into the network, three values were selected to represent the 

areas of the subregions that make up the detected area. These values correspond to the area of the red 

region, the area of the green region, and the combined area of the red and green regions. Additionally, 

three values describe the number of channels on which the signal corresponding to the point cloud of 

each subregion was detected. Figure 6 illustrates the measurements taken from the point cloud. In cases 

where the detected area consists of one or two subregions, any missing subregion is assigned an area 

of 0. 

 
Fig. 6. Image of damage 

In this way, a large input vector was replaced with six values. Among the possible detectable 

damages on the examined conveyor belt, the following were distinguished: the absence of a single cord 

(U1), the absence of two cords (U2), the absence of three cords (U3), a cut in the strands/wires (U4), a 

partial cut of one cord (U5), a cut of one cord (U6), a cut of two cords (U7), a cut of three cords (U8), 

and a splice in the belt (U9). 

To process the prepared input data and potential outputs, the neural network structure requires 6 

neurons in the input layer and 9 neurons in the output layer. However, since damage U2 is not 

represented in the analyzed dataset, the network's output consists of an 8-element vector. 
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Figure 7 displays the distribution of the measured parameters based on the type of damage, offering an 

initial evaluation of whether the chosen parameters can effectively distinguish between the various types 

of failures. 

 
Fig. 7. Distribution of measured parameters 

3. NEURAL NETWORK TRAINING PROCESS 

The neural network training was carried out in the MATLAB environment using the Deep Learning 

Toolbox. The dataset includes 98 examples, with 8 reserved for testing—one randomly selected from 

each category (the category with two missing cords was excluded, as it contains no training examples). 

The training set consists of 90 examples. The aim of the network training process is to find the optimal 

weight values that ensure the correct solution for the task. 

Before training the network, a hidden layer must be created (and the number of neurons defined) 

using an appropriate function, which also determines how to adjust the weight matrix. In this study, 

backpropagation was chosen as the optimization algorithm. The tool automatically trains the network 

while simultaneously calculating the validation error. When this error begins to rise, the training process 

is stopped to maintain the network’s ability to generalize, i.e., to solve tasks involving examples it has 

not encountered during training. 

3.1. Optimization of the number of neurons in the hidden layer 

The first of the parameters optimized in the designed artificial neural network was the number of neurons 

in the hidden layer. The number of neurons in the input and output layers is determined by the size of 

the input vector and the expected output vector (in this case, 6 and 9, respectively). 

In both the hidden and output layers, the activation function was established as a sigmoid function 

(this function takes values in the range <0,1>). The number of neurons in the hidden layer was varied 

within the range of 𝑘1 ∈ {3,8,20,100}. To minimize the stochastic properties, the training process was 

conducted 10 times, and the results were averaged. Table 1 summarizes the averaged values of the 

network's responses according to the specified class of damage. The test set contained one representative 

from each possible class, randomly selected each time from the full database. 
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Table 1. Averaged results - examination of the number of neurons in the hidden layer 

𝑘1 U1 U3 U4 U5 U6 U7 U8 U9 MSE 

𝑘1 = 3 

0.71 -0.02 0.09 0.04 0.01 0.14 0.06 0.01 

0.0615 

-0.02 0.25 0.05 -0.02 0.07 0.12 0.15 0.11 

0.04 0.04 0.34 0.09 0.13 0.04 0.03 0.04 

0.04 -0.03 0.15 0.75 0.30 -0.01 -0.01 -0.01 

0.00 0.09 0.16 0.17 0.17 0.08 0.10 0.01 

0.14 0.22 0.07 -0.02 0.12 0.30 0.29 0.03 

0.07 0.29 0.07 -0.01 0.16 0.31 0.34 0.03 

0.00 0.11 0.05 -0.01 0.01 0.00 0.01 0.70 

𝑘1 = 8 

0.87 0.02 0.02 0.02 -0.02 0.06 0.01 0.02 

0.0198 

0.00 0.89 0.00 0.00 0.01 0.03 0.02 0.00 

0.01 0.00 0.91 0.00 0.05 -0.01 -0.01 0.00 

0.02 0.00 -0.01 0.91 0.21 0.00 0.00 0.00 

0.00 0.01 0.09 0.08 0.56 0.03 0.04 0.01 

0.05 0.06 -0.01 -0.01 0.10 0.63 0.17 -0.01 

0.03 0.01 -0.01 0.00 0.09 0.23 0.74 0.00 

0.00 -0.01 0.01 0.00 -0.01 0.00 0.00 0.90 

𝑘1 = 20 

0.93 0.01 0.01 0.03 -0.01 0.04 0.02 0.00 

0.0116 

0.00 0.96 0.00 0.01 0.00 0.01 0.00 0.00 

0.01 0.00 0.97 0.00 0.02 0.00 0.00 0.00 

0.02 0.02 0.01 0.92 0.13 -0.01 0.00 -0.01 

-0.03 -0.01 0.02 0.07 0.70 0.06 0.02 0.00 

0.02 0.01 0.00 -0.01 0.11 0.74 0.14 -0.07 

0.02 0.00 0.00 -0.01 0.04 0.14 0.81 0.10 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 

𝑘1 = 100 

0.89 0.01 0.01 0.02 -0.02 0.05 0.02 0.00 

0.0120 

0.00 0.96 0.00 0.00 -0.01 0.01 0.01 0.02 

0.01 0.00 0.97 0.01 0.03 0.01 0.00 0.00 

0.04 0.01 0.01 0.90 0.17 -0.02 0.00 -0.01 

-0.02 -0.01 0.02 0.08 0.66 0.05 0.02 0.02 

0.04 0.02 0.00 -0.01 0.12 0.77 0.17 -0.01 

0.04 -0.01 0.00 -0.01 0.05 0.13 0.76 0.01 

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.95 

 

 

Analyzing the data from Table 1, the number of neurons in the hidden layer was determined to be 

𝑘1 = 20. For this value, the network exhibited the highest effectiveness. Figure 8 shows the confusion 

matrices obtained for each of the examined values—values are illustrated both by numerical values and 

by the selection of appropriate colors—white indicates a value of 0, while navy blue indicates a value 

of 1. A network that correctly recognizes all given examples has a confusion matrix with values of 1 on 

the diagonal and values of 0 elsewhere. A value greater than 1 outside the diagonal indicates a 

misclassification of a given class in favor of another. The presented figures include a first column 

indicating the absence of a decision made by the network. 
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Fig. 8. Confusion matrix - examination of the number of neurons in the hidden layer 

3.2. Optimization of the activation function in the hidden layer 

With the number of neurons in the hidden layer set to 𝑘1 = 20, an examination of the activation function 

in the hidden layer was conducted. These functions were varied within the range of 𝑓𝑢𝑛𝑎𝑘𝑡 ∈
{𝑙𝑜𝑔𝑠𝑖𝑔, 𝑝𝑜𝑠𝑙𝑖𝑛, 𝑡𝑎𝑛𝑠𝑖𝑔, 𝑟𝑎𝑑𝑏𝑎𝑠}. The graphs of these functions are shown in Figure 9. 

 

 
Fig. 9. Activation function curves 

The choice of an appropriate activation function can be crucial in solving a given classification 

(or regression) problem. Table 2 summarizes the results obtained in the process of optimizing the 

activation function in the hidden layer. 
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Table 2. Averaged results - examination of the activation function in the hidden layer 

𝑓𝑢𝑛𝑎𝑘𝑡 U1 U3 U4 U5 U6 U7 U8 U9 MSE 

𝑙𝑜𝑔𝑠𝑖𝑔 

0.88 0.01 0.02 0.02 -0.01 0.07 0.03 0.01 

0.0139 

0.00 0.94 0.00 0.00 0.00 0.00 0.02 0.00 

0.01 0.00 0.94 0.00 0.03 -0.01 -0.01 0.00 

0.04 0.01 0.03 0.92 0.21 0.01 0.00 -0.01 

-0.03 0.00 0.03 0.06 0.65 0.08 0.03 0.02 

0.06 0.02 0.00 -0.01 0.09 0.67 0.17 -0.01 

0.05 0.02 -0.01 0.01 0.04 0.18 0.74 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 

𝑡𝑎𝑛𝑠𝑖𝑔 

0.92 0.01 0.03 0.03 -0.01 0.06 -0.01 0.02 

0.0133 

0.01 0.94 0.00 0.00 0.00 0.00 0.02 -0.02 

0.01 0.00 0.97 0.00 0.04 0.00 0.00 0.00 

0.03 0.00 0.00 0.88 0.21 -0.02 -0.01 -0.01 

-0.02 0.01 0.04 0.10 0.65 0.06 0.04 0.02 

0.03 0.02 0.00 0.00 0.08 0.73 0.17 -0.02 

0.01 0.01 -0.01 -0.01 0.04 0.15 0.76 0.03 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 

𝑝𝑜𝑠𝑙𝑖𝑛 

0.81 -0.01 0.06 0.06 -0.14 0.18 0.07 0.02 

0.0330 

0.00 0.71 0.00 -0.02 0.02 0.01 0.08 0.00 

0.03 0.01 0.91 0.01 0.11 0.01 -0.03 0.00 

0.06 -0.03 -0.01 0.79 0.33 -0.01 0.03 0.00 

-0.06 0.03 0.09 0.16 0.50 0.03 0.07 0.00 

0.14 0.07 0.02 -0.03 0.04 0.49 0.24 0.00 

0.01 0.22 -0.06 0.02 0.11 0.28 0.51 -0.06 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 

 

𝑟𝑎𝑑𝑏𝑎𝑠 

0.92 0.02 0.01 0.02 -0.02 0.03 0.01 -0.01 

0.0119 

0.00 0.97 0.00 0.01 0.00 0.01 0.01 -0.01 

0.00 0.00 0.97 0.00 0.02 -0.01 0.00 0.01 

0.02 0.01 -0.02 0.89 0.13 -0.01 -0.01 0.03 

0.00 0.00 0.04 0.10 0.69 0.06 0.03 -0.05 

0.01 -0.02 0.00 0.00 0.12 0.74 0.15 0.02 

0.05 0.02 -0.01 -0.01 0.06 0.16 0.78 -0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 

 

A helpful approach in selecting the best activation function is to examine the confusion matrices. 

Such matrices for the tested activation functions in the hidden layer are shown in Figure 10. 
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Fig. 10. Confusion matrix - examination of the activation function in the hidden layer 

Based on the data collected in Table 2 and the confusion matrices presented in Figure 10, the 

optimal activation function in the hidden layer was determined to be radbas. This activation function 

was adopted for further studies. 

3.3. Optimization of the activation function in the hidden layer 

An important aspect of the functioning of a neural network is the selection of the appropriate activation 

function in the output layer. Here, it is worth noting the expected output of the network—if values from 

the set of real numbers are expected without a maximum and minimum (for example, in regression 

tasks), a linear function (𝑝𝑢𝑟𝑒𝑙𝑖𝑛) should be used. If the expected output takes only values greater than 

0, the use of the ReLU function (𝑝𝑜𝑠𝑙𝑖𝑛) can be considered. If the output is limited to the range of values 

<-1, 1>, the hyperbolic tangent function (𝑡𝑎𝑛ℎ) can be used. In classification tasks, the use of the 

softmax function is often also considered, which converts the value obtained by the network into the 

probability of accepting a given class (the sum of the values at all outputs equals 1). In the conducted 

study, the activation function in the output layer was varied in the range of 𝑓𝑢𝑛𝑜𝑢𝑡 ∈
{𝑝𝑢𝑟𝑒𝑙𝑖𝑛, 𝑡𝑎𝑛𝑠𝑖𝑔, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥}. The averaged results obtained from the study are presented in Table 3. 
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Table 3. Averaged results - study of the activation function in the output layer 

𝑓𝑢𝑛𝑜𝑢𝑡 U1 U3 U4 U5 U6 U7 U8 U9 MSE 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛 

0.93 0.03 0.01 0.03 -0.03 0.05 0.00 0.00 

0.0121 

0.00 0.96 0.00 0.01 0.00 0.00 0.02 0.00 

0.01 0.00 0.97 0.00 0.03 0.00 0.00 0.03 

0.02 0.01 0.00 0.88 0.20 -0.01 0.00 0.03 

0.00 -0.01 0.03 0.11 0.63 0.09 0.03 -0.02 

0.03 0.01 0.00 0.00 0.13 0.74 0.12 0.01 

0.00 -0.02 -0.01 -0.02 0.05 0.12 0.82 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 

𝑡𝑎𝑛𝑠𝑖𝑔 

0.91 0.01 0.01 0.03 0.00 0.04 0.01 0.02 

0.0130 

0.00 0.90 0.01 0.00 0.00 0.00 0.03 0.01 

0.00 0.01 0.92 0.01 0.03 0.01 0.00 0.02 

0.02 0.01 0.01 0.86 0.18 0.00 0.00 0.02 

0.00 0.01 0.05 0.09 0.61 0.05 0.01 0.03 

0.04 0.02 0.01 0.00 0.10 0.67 0.16 0.03 

0.02 0.04 0.00 0.01 0.07 0.18 0.68 0.01 

0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.87 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

0.88 0.51 0.53 0.53 0.52 0.56 0.54 0.51 

0.2533 

0.51 0.82 0.51 0.51 0.51 0.52 0.53 0.50 

0.51 0.51 0.85 0.52 0.55 0.51 0.51 0.51 

0.53 0.51 0.55 0.89 0.75 0.51 0.51 0.50 

0.51 0.51 0.52 0.52 0.57 0.51 0.51 0.50 

0.54 0.56 0.52 0.52 0.55 0.73 0.65 0.51 

0.53 0.59 0.52 0.51 0.55 0.66 0.76 0.51 

0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.96 

4. SUMMARY 

The popularity of using artificial neural networks to solve classification problems primarily stems from 

their ability to make decisions that can often be more accurate than those made by a team of specialists. 

They can find applications in nearly every field of science. For instance, a neural network developed by 

a team of specialists from the USA and China for use in medicine to diagnose patient diseases frequently 

achieves results that surpass those of a team of medical doctors. For example, the effectiveness of 

recognizing the presence of asthma is 90%, while the accuracy of diagnoses made by doctors ranges 

from 82% to 90%. 

Magnetic sensor data is highly suitable for further processing when searching for potential 

damage, and recording this data in a two-dimensional format makes it easier to work with and verify the 

processed information. However, for accurate identification of potential issues, it is essential for the 

operator to be well-trained, enabling them to focus on the most characteristic points that signify the 

classification of a given area into a specific category. Therefore, it is worth considering the integration 

of artificial neural network mechanisms to automate such tasks, eliminating the need to manually search 

for values that might be indicative of a particular category. During the learning process, the network 

will automatically determine the input weights, allowing it to assess which elements of the input 

sequence are most significant for classifying a given category. 
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The use of artificial intelligence, specifically neural networks, for classifying conveyor belt 

damage presents a promising research avenue. Preliminary results discussed in this article support the 

potential of artificial neural networks in this field. To further improve the network's classification 

performance, it would be beneficial to incorporate additional input features, such as the displacement of 

a given subarea's centroid from the geometric centre, the distance between the centroids of individual 

subareas, or even the span of the area in both directions. 

A crucial aspect of designing artificial neural networks is their optimization. Each network 

consists of numerous hyperparameters that must be carefully selected to achieve optimal performance. 

These parameters include the number of hidden layers, the number of neurons in each layer, and the 

appropriate choice of optimizer and loss function. The selection of some parameters depends on the 

nature of the problem being addressed. For instance, the cross-entropy loss function is typically used for 

classification tasks, while the mean squared error (MSE) function is most commonly applied in 

regression tasks. 

Research conducted to optimize the network's performance was carried out in a manner that 

avoided generating multiple solutions – a set of initial parameters was established, and then only one 

value was changed in each experiment, with the best result from that experiment being used for further 

analysis. This chosen method of conducting experiments represents a compromise between time, the 

number of experiments conducted, and optimization capabilities. However, it may turn out that there is 

another parameter selection that guarantees a better solution and has not been subjected to the research 

process. 

Due to the fact that the weights assigned to neurons are initialized randomly, it is essential to 

conduct multiple experiments to eliminate stochastic properties. In the research conducted as part of the 

project, experiments were repeated one hundred times, and the results were averaged. 

The analysis of the data presented in Table 1 and Figure 8 indicates that too few neurons in the hidden 

layer (𝑘1 = 3) limit the network's performance, and the obtained results are not optimal. Conversely, 

too many neurons (𝑘1 = 100) significantly prolong the learning algorithm's runtime, and the network 

does not show improvement. Good results were obtained with 8 and 20 neurons in the hidden layer—

here, there are slight differences favoring 20 neurons. 

Changing the activation function in the hidden layer mainly causes a change between no response 

from the network and correct classification, although the change is not highly noticeable. The worst 

results among those presented in the study were obtained for the ReLU activation function (𝑝𝑜𝑠𝑙𝑖𝑛), 

while the best results were for the radial basis function (𝑟𝑎𝑑𝑏𝑎𝑠)—for this reason, the radbas function 

was chosen for further research. The use of different activation functions in the output layer only 

demonstrated that in this case, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is not applicable, while both the linear function 

and the hyperbolic tangent function are well-suited for the classification task at hand. 

It is worth noting that the improvement in the network's performance after optimizing these few 

parameters is significant, although many values still need to be tuned to achieve a faster and possibly 

better-performing network. It is also important to highlight that the training set consisted of fewer than 

100 examples, and nevertheless, the recognition effectiveness oscillated around 90%. Increasing the 

training base will certainly improve the network's effectiveness and can be the subject of further analysis. 

Due to the limitations of available data, the classification results were not verified directly with manual 

inspection or real-world failure validation. However, future studies will aim to evaluate the 

correspondence between the predicted and actual damage patterns. 
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