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A b s t r a c t  

Coal dust explosions are a significant threat to underground coal mines. To reduce this risk, the combustible coal 

dust is mixed with stone dust to increase the total incombustible contents (TIC). Conventional TIC measurement 

methods rely on time-consuming laboratory analyses, involving extensive sample preparation and chemical 

testing. In contrast, near-infrared (NIR) spectroscopy has emerged as a rapid, non-destructive alternative for TIC 

prediction. However, existing machine learning models for analysing high-dimensional spectral data often require 

extensive preprocessing, increasing the analysis complexity.  

In this study, we present a residual - Convolutional Neural Network (CNN) based method for end-to-end analysis 

of raw near-infrared (NIR) spectral data to reduce preprocessing requirements while accurately classifying the TIC 

levels. The model was evaluated using 300 coal/stone dust samples, with 100 coal samples sourced from various 

Australian coal mines. The deep learning model, configured with optimal nine residual blocks, demonstrated high 

accuracy in predicting high TIC samples (TIC ≥ 85%), achieving misclassification rates of 0.05 on the training set 

and 0.14 on the testing set, respectively.  

Two challenges were identified: class imbalance and spectral overlap. The low TIC samples (TIC < 70%) 

accounted for only 9% of the total dataset (27 out of 300), resulting in poor prediction for this underrepresented 

class. Additionally, significant spectral similarity with distinct TIC values reduced the model’s generalization 

ability. Despite these challenges, our study demonstrates the potential for developing a reliable and efficient end-

to-end deep learning framework for TIC prediction, which would allow for a significant reduction in preprocessing 

efforts. 
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1. INTRODUCTION 

Coal dust introduces significant safety and health hazards in underground mining. Beyond its long-term 

health effects on miners such as lung diseases, explosions can be triggered by uncontrolled coal dust 

[1]. Over the past century, coal dust explosions have caused some of the worst mining disasters, 
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including the Mount Mulligan Mine disaster in Australia in 1921, which killed 75 miners, and the Pike 

River Mine disaster in New Zealand in 2010, resulting in 29 fatalities. These disasters highlight the 

importance of monitoring and controlling coal dust in underground mines to ensure safety. A key 

preventative measure is increasing the total incombustible content (TIC) of the coal dust in the mine by 

adding stone dust to the already present coal dust, which reduces its combustibility. In Australia, 

regulations set the TIC thresholds to 70%, 80% and 85% depending on the zone within the mine [2, 3]. 

Accurate and timely TIC measurements are therefore critical to adhere to the regulations and, thus, to 

reduce explosion risks.  

Traditional TIC measurement methods, such as Low Temperature Ashing (LTA), rely on 

chemical testing and extensive manual sample preparation, making them unsuitable for real-time 

monitoring in dynamic mining environments. While the Coal Dust Explosibility Meter (CDEM), 

developed by the National Institute for Occupational Safety and Health (NIOSH), was introduced to 

address the time gap, it suffered from significant limitations, including complex calibration, moisture 

sensitivity, and reduced accuracy for certain coal types, especially in Australia [4]. As a result, labour-

intensive laboratory analysis remains the primary method for TIC measurement, limiting operational 

efficiency.  

Near-Infrared Spectroscopy (NIRS) has emerged as a fast, non-destructive method for material 

analysis, with proven success across industries, such as agriculture, food processing, and mining. NIRS 

has enabled reliable prediction of material properties when combined with machine learning models. 

For example, Begum et al. [5] classified coal species using short-wave infrared spectroscopy, while Zou 

et al. [6] employed NIRS with enhanced broad learning to identify coal grades. Andres et al. [7] 

demonstrated the accuracy of NIRS with Partial Least Squares Regression (PLS) for coal property 

prediction, and Li et al. [8] validated its feasibility for sulphur quantification in Australian coal. Machine 

learning models, including Support Vector Machines (SVMs) and Extreme Gradient Boosting 

(XGBoost), have also been successfully applied to NIRS data, capturing relationships between spectra 

and coal quality metrics. However, applying NIRS to TIC prediction in coal/stone dust samples still 

faces several challenges.  

Traditional machine learning methods require extensive data preprocessing. This includes 

baseline correction, smoothing, normalization, outlier removal, data augmentation and other, which 

must be recalibrated when analysing samples from different source. This dependence on predefined 

preprocessing steps reduces the generalizability of these models. Moreover, such methods are less 

effective in capturing complex, non-linear patterns in high-dimensional spectral data, resulting in 

reduced predictive accuracy, especially when faced with noisy or imbalanced datasets. Advances in deep 

learning, particularly Convolutional Neural Networks (CNNs), have provided significant potential for 

overcoming these challenges. Unlike traditional methods, CNNs can process raw spectral data directly, 

eliminating the need for extensive preprocessing. They can automatically identify patterns and 

relationships within spectral data, making them highly adaptable to diverse coal/stone dust samples. For 

instance, Chakravartula et al. [9] utilized CNNs for detecting coffee adulteration using Fourier-

Transform NIR spectroscopy, and Le et al. [10] employed CNNs for predicting coal quality. 

In this paper, we propose an end-to-end deep learning framework that integrates NIRS with a 

CNN architecture incorporating residual blocks for TIC prediction in coal/stone dust samples. This 

framework eliminates the need for extensive preprocessing and demonstrates adaptability to small, 

imbalanced coal/stone dust datasets. The structure of this paper is as follows: Section 2 outlines the 

methodology, including sample preparation, NIR measurement, baseline correction, and model 

architecture; Section 3 presents results and discussion, and Section 4 concludes with key findings and 

future directions. 
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2. METHODOLOGY 

The overall framework of the TIC prediction system is illustrated in Fig. 1. Specifically, this workflow 

begins with sample preparation and data collection. Coal/stone dust samples were prepared with 

predefined TIC levels, ensuring they represented diverse conditions and comply with Australian 

regulatory thresholds. These samples were analysed using a portable NIR spectrometer to capture 

spectral data across the wavelength range of 900 – 1700 nm. Once the spectral dataset was collected, it 

was immediately divided into training (80%) and testing (20%) datasets. The training dataset, which 

reflects the TIC categories’ imbalance, was adopted for model development. Rather than employing 

artificial balancing techniques, such as, data augmentation, the adopted approach in this study depended 

on the robustness of the deep learning model’s architecture to effectively handle the imbalance by 

learning from the raw spectral features. The test dataset was strictly reserved for final evaluation to 

prevent data leakage.  

 

Fig. 1. Overview of the NIR spectral data-based deep learning model for TIC classification in coal/stone dust 

The second step was an essential preprocessing. The raw spectral data typically contains noise, 

baseline drift and other variabilities caused by environmental conditions or the instrument itself. To 

ensure data quality, an automated baseline correction algorithm that dynamically adjusts the spectral 

baseline to enhance signal quality was applied. The fully automated baseline correction was applied 

consistently across training and testing datasets.  

The core of the system was the CNN with residual blocks, specifically designed to process high-

dimensional spectral data directly. The CNN architecture includes multiple modules, such as, fully 
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connected layer, max pooling layer, adaptive average pooling layer and residual blocks, for extracting 

both local and global features from the input spectra. These learned spectral features were adopted in 

another fully connected layer to classify the samples into four TIC categories: class 1 (TIC < 70%), class 

2 (70% ≤ TIC < 80%), class 3 (80% ≤TIC < 85%), and class 4 (TIC ≥ 85%). 

The final stage of the presented work involved model evaluation and classification. After training 

the CNN model on the training dataset, its performance was validated using the test dataset. The 

evaluation focused on key metrics, including F-score, accuracy, precision and misclassification rate, to 

provide a comprehensive evaluation of the model’s predictive capabilities. 

2.1. Samples preparation and spectral measurements 

A total of 100 coal samples were collected from mines in Queensland and New South Wales, Australia, 

to ensure diversity and representativeness in the dataset for TIC prediction. These samples included both 

fresh and aged coal stored for up to two decades, showing a range of ash and moisture levels. Proximate 

analyses were performed on all samples following ISO 11722, ISO 1171, and ISO 562 Standards to 

characterize their properties prior to further preparation. Statistical tests, including the Levene Test and 

One-Way ANOVA, as listed in Table 1, indicated that, while most parameters i.e. ash, volatile matter 

and fixed carbon, showed no significant difference (p > 0.05), moisture content exhibited a significant 

regional variation (p < 0.05), which was likely due to difference in aging and drying during storage. 

Table 1. Statistical Analysis of Proximate Analysis by Region 

Coal Quality Levene Test One-Way ANOVA 

Ash 0.21, p=0.65 0.19, p=0.67 

Moisture 7.20, p=0.009 4.60, p=0.04 

Volatile Matter 0.01, p=0.93 1.41, p=0.24 

Fixed Carbon 2.32, p=0.13 0.16, p=0.69 

 

To prepare the coal/stone dust samples for analysis, the coal was first crushed to form particles 

smaller than 4 mm using a Jaqus laboratory jaw crusher and then milled to less than 250 µm with a 

Retsch Cross Beater mill. The processed coal dust was mixed with stone dust to produce a total of 300 

coal/stone dust samples. Each of the 100 coal samples was used to prepare three mixed samples with 

TIC levels targeted at 70%, 80%, and 85%, respectively. 

The TIC includes both stone dust and the ash content of coal. For example, 70% TIC means that 

70% of the total weight of the coal/stone dust sample is composed of incombustible components (stone 

dust + coal ash), while the remaining 30% consists of combustible coal contents, such as, Fixed Carbon 

and Volatile Matter. The stone dust, primarily composed of calcium carbonate (CaCO3) and supplied 

by Sibelco and SEQ lime, was milled to a similar particle size as the coal dust. Its minimal absorption 

of the NIR wavelengths ensured that it did not significantly affect the spectral data. 

The TIC levels of the mixed coal/stone dust samples were designed to follow three normal 

distributions centred at 70%, 80% and 85%, respectively, each generating 100 random TIC values with 

a standard deviation of 5%. These random TIC values ensured realistic variability reflective of 

regulatory thresholds, providing a diverse and representative dataset for model training. 
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 Each coal/stone dust sample was prepared using a fixed 15g of coal dust, and the required stone dust 

weight was calculated using Eq. 2.1:   

𝑤𝑐𝑜𝑎𝑙_𝑑𝑢𝑠𝑡 =  
1 − 𝑇𝐼𝐶 ∗ 100%

1 − 𝐴𝑠ℎ_𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∗ 100%
∗ 𝑤𝑡𝑜𝑡𝑎𝑙 (2.1) 

where: 𝑤𝑐𝑜𝑎𝑙_𝑑𝑢𝑠𝑡 is the coal dust weight (15g in this case), 𝑤𝑡𝑜𝑡𝑎𝑙 is the total weight of coal/stone dust 

sample, 𝐴𝑠ℎ_𝐶𝑜𝑛𝑡𝑒𝑛𝑡 is the percentage of the ash in the original coal. The required stone dust weight 

was then calculated as per Eq. 2.2: 

𝑤𝑠𝑡𝑜𝑛𝑒_𝑑𝑢𝑠𝑡 = 𝑤𝑡𝑜𝑡𝑎𝑙 −  𝑤𝑐𝑜𝑎𝑙_𝑑𝑢𝑠𝑡 (2.2) 

where: 𝑤𝑠𝑡𝑜𝑛𝑒_𝑑𝑢𝑠𝑡  is the weight of the stone dust needed to achieve the target TIC value. This 

systematic approach ensured accurate and consistent mixing of the coal and stone dust for each target 

TIC level. 

The prepared samples were placed in clear glass petri dishes and spread into a thin, uniform layer 

approximately 2–3 mm thick to ensure consistent spectral measurements. Measurements were 

conducted on a neutral-coloured laboratory countertop to avoid interference from the surface or 

container. NIR spectra were collected using a StellarNet NIR ADK portable spectrometer with a 

resolution of <5 nm and accuracy of <0.25 nm (Fig. 1), capturing data in the wavelength spectrum 

between 900 – 1700 nm. The instrument recorded absorbance units and counts, and all spectral data 

were tagged with unique sample identifiers. The global dataset was then divided into training (80%) and 

testing (20%) subsets. 

As a total of 300 coal/stone dust samples were prepared, 240 samples were used for training and 

the remaining 60 samples were reserved for testing. It should be noted that the dataset size is relatively 

limited for training deep neural networks, which typically require large-scale data to achieve robust 

generalization. However, the aim of this study was to conduct an initial investigation into the feasibility 

of applying a deep learning model to predict TIC directly from raw or minimally pre-processed NIR 

spectral data. This exploratory approach intentionally avoided extensive pre-processing and data 

augmentation to evaluate the baseline capability of CNN architectures under realistic constraints that 

commonly occur in industrial environments. To reduce the risk of overfitting on small datasets, a 

lightweight one-dimensional CNN (1D CNN) was adopted in this study. This architecture is well-suited 

for sequential spectral data and contains significantly fewer parameters compared to standard image-

based 2D CNNs. 

In parallel research, a comprehensive analysis was done using classical machine learning 

algorithms, including Partial Least Squares Regression (PLS), Support Vector Machines (SVM) and 

Random Forests (RF), in combination with various advanced spectral data pre-processing and synthetic 

data generation techniques, such as Synthetic Minority Over-sampling Technique (SMOTE) and 

Gaussian Process Regression (GPR). These combinations of models and synthetic data generation 

techniques demonstrated improved accuracy and robustness on the same imbalanced and small sample 

dataset. In addition, similar synthetic data generation techniques will be incorporated into the deep 

learning framework in future work, with the aim of developing a more scalable, accurate, and 

generalizable TIC prediction system suitable for practical field deployment. 

2.2. Fully automated baseline correction algorithm 

The baseline correction process is an essential step in preparing NIR spectral data for analysis as it 

ensures that noise and baseline shifts, introduced by environmental or instrumental variability, do not 

significantly impact the model’s ability to extract meaningful features. Numerous studies have proposed 
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various approaches to baseline correction for spectral data [11-14]. After a comprehensive evaluation of 

these methods, a small-window moving average-based fully automated baseline estimation method was 

implemented [12]. This approach is model-free, adaptive to a wide range of spectral baseline for 

integration into the deep learning modelling framework for fully automated correction. The flowchart 

of this algorithm is illustrated in Fig. 2. 

 

Fig. 2. Flowchart of the baseline correction algorithm 

The correction process begins by initializing the stripped spectrum S, intermediate baseline 

shapes B, the window size W, and area A. A zero-ordered Savitzky-Golay filter is applied iteratively to 

calculate a smoothed baseline for the raw spectral data. This filter preserves the spectral signal’s shape 

and key features while smoothing out noise. During each iteration, the baseline B is updated relative to 

the stripped spectrum S, and the intermediate baselines are stored for further analysis. The area between 

the stripped spectrum and the baseline is recalculated using the trapezoidal integration method, and the 

window size W is incrementally increased to refine the baseline calculation. A critical step in this 

algorithm is identifying the optimal baseline. This is achieved by determining the local minimum of the 

second-to-last area value in the list of areas calculated during the iterations. The baseline corresponding 

to this local minimum is selected as the optimal baseline, and the corrected spectrum is computed by 

subtracting the optimal baseline from the original spectrum. This iterative and adaptive process allows 

the algorithm to handle a wide range of baseline variations without requiring manual adjustments. 

The effectiveness of the baseline correction algorithm is illustrated in Fig. 3(a) and (b). Fig. 3(a) 

shows the original spectral samples from the training dataset, highlighting significant baseline shifts 

across different classes, which could introduce noise and bias into downstream processing. After 
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applying the correction algorithm, the corrected spectra in Fig. 3(b) are well-aligned, with baseline 

variations effectively removed while preserving the spectral features necessary for TIC classification. 

This automated and iterative correction method eliminates the need for manual calibration or external 

adjustments, ensuring a standardized preprocessing pipeline. The corrected spectral data served as new 

inputs for the TIC classification model. 

 

Fig. 3. The original and corrected spectrum samples in the training set: (a) original samples in different classes, 

(b) corrected samples in different classes  

2.3. Model architecture 

This section details the model architecture, as illustrated in Fig. 4. The architecture is based on 1D-CNN 

and incorporates residual blocks to efficiently process the high-dimensional spectral data. This design 

allows the model to capture both low-level and high-level features from the NIR spectra, which are 

essential for accurate TIC classification. At the input stage, the corrected spectral data are fed into the 

model, starting with a series of convolutional layers organized into residual blocks. These residual 

blocks utilize skip connections to preserve information from earlier layers and address the vanishing 

gradient problem during training. 

The earlier residual blocks are designed with fewer channels to focus on low-level local features, 

such as, the peaks and valleys of individual spectra. These local features capture subtle variations in the 

data that are indicative of TIC differences. As the data moves deeper into the network, subsequent 

residual blocks with an increased number of channels extract high-level global features, such as, the 

overall spectral shape, which are critical for differentiating between TIC categories. To further enhance 

computational efficiency and avoid overfitting, max pooling layers are applied between groups of 

residual blocks to reduce data dimensionality while retaining the most important spectral features. An 

adaptive average pooling layer then transforms the output into a fixed-length feature vector, ensuring 
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compatibility with the final fully connected layers. Finally, the fully connected layers map the extracted 

features to the output layer, where the data is classified into four TIC categories: class 1 (TIC < 70%), 

class 2 (70% ≤ TIC < 80%), class 3 (80% ≤TIC < 85%), and class 4 (TIC ≥ 85%). 

 

Fig. 4. Model architecture of the 1D CNN with residual blocks 

A key aspect of this model is the role of residual blocks in improving feature extraction and 

learning efficiency. The skip connections within these blocks allow the network to learn both local and 

global patterns effectively, even as the depth of the network increases. However, the number of residual 

blocks significantly influences the model's performance. While deeper networks can extract more 

complex features, excessive depth may lead to overfitting in accuracy. The effect of the number of 

blocks on model performance was investigated by varying the number of residual blocks from 0 to 15. 

This aimed to identify the optimal number of residual blocks within the current model architecture that 

yield the highest classification accuracy. 

2.4. Modelling environment and parameters 

All modelling was conducted using Python 3.11.7 and PyTorch 2.2.0 and processed on a 13th Gen 

Intel® Core™ i7-13850HX CPU with 64 GB RAM, running Windows 10. All training and inference 

were performed on the CPU without GPU acceleration. The corrected spectral data were used as single 

channel 1D input to the model. 

The residual block structure configuration followed a progressive channel expansion strategy: 

from 1 to 64 channels in the first block, then doubling in subsequent blocks up to 512 channels. All 

subsequent residual blocks maintained 512 input and output channels. Max pooling layers with a kernel 

size and stride of 2 were applied between major stages to reduce dimensionality. The final fully 
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connected layer reduced the extracted features from 512 to 128 and then to 4 output units, representing 

the four TIC classes. Model training used the Cross Entropy Loss Function and the Adam optimizer 

(learning rate 0.001), with a batch size of 32 and 50 training epochs. These parameters were kept 

consistent for all tests evaluating different numbers of residual blocks. 

3. RESULTS AND DISCUSSION 

This section presents the results and analysis of the proposed CNN model with residual blocks for TIC 

based classification of coal/stone dust. Section 3.1 presents the influence of the number of residual 

blocks on model performance, identifying the optimal configuration. Section 3.2 demonstrates the 

training results with the optimal residual block configuration, highlighting the model’s learning 

capability through misclassification rates and performance metrics. Section 3.3 evaluates the model’s 

generalization ability on the testing dataset, providing insights into its reliability for unseen data. Finally, 

Section 3.4 explores the spectral data similarity, discussing the challenges of overlapping spectral 

patterns across TIC classes. 

3.1  Influence of residual blocks 

The results of the investigation into the influence of the number of residual blocks on model performance 

are summarized in Fig. 5. These results show the training and testing classification accuracies for models 

using selected numbers of residual blocks (0, 3, 6, 9, 12 and 15) to evaluate performance trends across 

increasing model depth. 

As demonstrated, the classification accuracy generally improves as the number of residual blocks 

increases, reaching a peak at 9 residual blocks. At this point, the training accuracy is 0.58, and the testing 

accuracy is 0.6, indicating a good balance between the model’s ability to learn from the training data 

and its generalization to unseen data. The improved performance with up to 9 residual blocks can be 

attributed to the increased capacity of the model to extract meaningful features from the high-

dimensional spectral data. The residual connections in these blocks allow the model to effectively learn 

both low-level and high-level features, enhancing its overall predictive ability. 

However, beyond 9 residual blocks, the model’s performance begins to decrease, particularly on 

the test dataset. For instance, when the number of residual blocks reaches 12, the testing accuracy drops 

significantly from 0.6 to 0.38 by over 36.7%. This decrease suggests that excessive network depth 

introduces overfitting, where the model becomes overly specialized to the training data and loses its 

ability to generalize. The training accuracy remains relatively stable after 9 blocks, further indicating 

that the additional blocks contribute little to meaningful learning and may instead introduce noise or 

redundant features. 

The performance at 0 residual blocks (a simple CNN without residual connections) is notably 

poor, with a testing accuracy of 0.35. This shows the importance of residual connections in enabling the 

network to transfer information effectively across layers and eliminate vanishing gradient issues. The 

gradual improvement from 0 to 9 residual blocks demonstrates the value of residual learning in 

improving feature extraction and classification accuracy for spectral data. While adding more blocks 

increases computational cost and the risk of overfitting, too few blocks limit the model's capacity to 

capture essential patterns in the current datasets (Fig. 4). These results indicate that 9 residual blocks 

represent the optimal configuration for this dataset, balancing model complexity and performance. 
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Fig. 5. Training and testing classification accuracy using CNN model with different residual blocks 

3.2  Training results with optimal residual blocks 

The training results with the optimal number of residual blocks (9 blocks) are presented using multiple 

metrics, as shown in Fig. 6 and Fig. 7. These metrics include the misclassification rate, confusion matrix, 

and performance scores (precision, recall, and F1-score) across the four TIC classes. 

The misclassification rates for each TIC class, as shown in Fig. 6, exhibit significant differences 

in the model's performance across the classes. Class 1 (TIC < 70%) exhibits the highest misclassification 

rate at 1.0, indicating that all class 1 samples are incorrectly classified. This poor performance is further 

supported by the confusion matrix, where none of the true class 1 samples are correctly predicted. This 

may be attributed to the limited representation of class 1 in the training dataset or spectral similarities 

between class 1 and neighbouring classes. 

Classes 2 (70% ≤ TIC < 80%) and 3 (80% ≤ TIC < 85%) also show relatively high 

misclassification rates of 0.47 and 0.53, respectively. The confusion matrix indicates that a significant 

number of samples from these classes are misclassified as each other, likely due to the overlapping 

spectral features in their TIC ranges. In contrast, class 4 (TIC ≥ 85%) demonstrates a very low 

misclassification rate of 0.05, with most samples correctly classified. The confusion matrix in Fig. 6 

confirms this result, showing 60 correctly predicted samples for class 4 out of 63 total samples. 

 

Fig. 6. Misclassification rate and confusion matrix using the model with optimized residual blocks on the 

training set 
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Fig. 7. Performance scores of the model with optimized residual blocks on the training dataset 

The model's further performance evaluation using precision, recall, and F1-score for each class is shown 

in Fig. 7. Precision measures the proportion of correctly predicted samples among all samples predicted 

for a given class, recall measures the proportion of correctly predicted samples among the total true 

samples for a class, and the F1-score provides a harmonic mean of precision and recall providing a 

balanced evaluation [15].  

Specifically, class 1 (TIC < 70%) has the lowest scores across all metrics, with precision, recall, 

and F1-score all being zero. This indicates that the model struggles to identify samples from this class 

accurately. Class 2 (70% ≤ TIC < 80%) achieves moderate precision (0.70) but lower recall (0.53) and 

F1-score (0.60). This shows that while the model is relatively precise in predicting class 2, it fails to 

capture a significant portion of the true samples, leading to moderate performance. Class 3 (80% ≤ TIC 

< 85%) has similar performance to class 2, with slightly lower precision (0.39), recall (0.47), and F1-

score (0.43). This suggests that spectral overlaps with other classes impact the model's ability to 

distinguish this range effectively. In comparison, class 4 (TIC ≥ 85%) exhibits the highest performance 

in terms of precision (0.95), recall (0.64), and F1-score (0.76). These results indicate that the deep 

learning model excels in identifying high TIC samples, which likely have distinct spectral features, like 

stronger and more consistent absorption peaks in specific wavelength ranges, that the model can 

recognize. 

These results highlight the varying performance of the model across TIC classes, revealing 

specific strengths and limitations. The high performance for class 4 (TIC ≥ 85%) suggests that the model 

effectively captures clear spectral patterns in high TIC samples. However, the poor performance for 

class 1 (TIC < 70%) points to challenges, such as, minority of Class 1 in the dataset or overlapping 

spectral features with Classes 2 and 3, which make it difficult for the model to differentiate this range 

accurately. Similarly, the moderate performance for Classes 2 and 3 reflects the complexity of 

distinguishing between intermediate TIC ranges. 

3.3  Testing results with optimal residual blocks 

The testing results for the model with the optimal configuration of 9 residual blocks are presented in 

Fig. 8 and Fig. 9. These results evaluate the model's generalization performance for unseen data using 

accuracy metrics, such as the misclassification rate, confusion matrix, and performance scores 

(precision, recall, and F1-score) for the four TIC classes. 
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The misclassification rates across TIC classes, as shown in Fig. 8, demonstrate notable differences 

in the model’s ability to correctly classify samples in each class. Similarly to the training results, class 

1 (TIC < 70%) has the highest misclassification rate at 1.0, indicating that none of the class 1 samples 

were correctly predicted. The confusion matrix further supports this observation, as all seven samples 

from class 1 in the testing dataset were misclassified, mostly as class 2. This issue may be attributed to 

the minority of class 1 in the training data, as well as the spectral similarities between classes. 

In contrast, class 2 (70% ≤ TIC < 80%) and class 3 (80% ≤ TIC < 85%) show moderate 

misclassification rates of 0.35 and 0.42, respectively. The confusion matrix indicates that some class 2 

samples are misclassified as class 3, and vice versa, reflecting the challenge of distinguishing between 

intermediate TIC ranges. However, the misclassification rates for these classes are significantly lower 

than for class 1, suggesting that the model is better at identifying intermediate classes, although with 

some confusion. 

For class 4 (TIC ≥ 85%) the misclassification rate is the lowest at 0.14, with most samples 

correctly classified. The confusion matrix shows that 12 out of 14 samples from class 4 were correctly 

predicted, highlighting the model's strong performance for this class. The distinct spectral features of 

high TIC samples likely contributed to this higher accuracy. 

 

Fig. 8. Misclassification rate and confusion matrix on the testing dataset 

 

Fig. 9. Performance scores of the model on the testing dataset 

These performance scores provide a detailed evaluation of the model’s generalization 

performance for each TIC class, as shown in Fig. 9. For class 1 (TIC < 70%), all performance metrics 
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are zero, reflecting the model's complete failure to classify this class correctly. This indicates that class 

1 samples either share significant overlap with neighbouring classes or are too underrepresented in the 

training data for the model to learn their features effectively. Class 2 (70% ≤ TIC < 80%) achieved 

balanced performance with precision, recall, and F1-scores all at 0.65. This suggests that while the 

model can identify a majority of the class 2 samples, some are still misclassified as class 3 due to 

overlapping spectral characteristics. Class 3 (80% ≤ TIC < 85%) demonstrates slightly lower 

performance, with precision at 0.52, recall at 0.58, and an F1-score of 0.55. This indicates that class 3 

samples are more frequently confused with neighbouring classes, which impacts the model's overall 

performance for this range. For class 4 (TIC ≥ 85%), the model achieves its highest performance, with 

precision at 0.86, recall at 0.63, and an F1-score of 0.73. These results indicate that the model effectively 

identifies high TIC samples, likely due to their distinct and separable spectral features. 

The testing results highlight significant variability in the model’s ability to classify TIC classes, 

with strong performance for class 4 and moderate success for classes 2 and 3. However, the failure to 

classify class 1 accurately shows the limitations of the current dataset and model configuration. The 

minority of class 1 in the training data, combined with the spectral similarities between low TIC classes, 

presents a major challenge for the model. These findings suggest that improving data balance may 

enhance the model's performance for minority classes. Additionally, the moderate performance for 

intermediate TIC classes (2 and 3) indicates that further optimization of the model architecture may be 

necessary to better capture minor differences in spectral features.  

3.4  Spectral data similarity 

The selected spectral curves shown in Fig. 10 represent samples from different TIC classes. These curves 

reveal a significant challenge in the classification task, i.e. the high degree of spectral similarity between 

samples with different TIC values. These plots show the absorbance spectra for several samples, each 

with a unique TIC value. Despite belonging to different TIC classes, the spectral curves show 

significantly similar patterns, particularly in their overall shape, peaks, and valleys. 

 

Fig. 10. Spectral similarity in neighbouring classes with different TIC values 
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For instance, spectrum 2 (TIC: 64.2) from class 1 (TIC < 70%) and spectrum 98 (TIC: 76.1) from 

class 2 (70% ≤ TIC < 80%) are visually almost indistinguishable, with only minor differences in the 

intensity around specific wavelengths near 1250 nm and 1400 nm. A similar pattern is observed in the 

upper-right subplot, where spectrum 40 (TIC: 71.5) from class 2 and spectrum 188 (TIC: 82.5) from 

class 3 (80% ≤ TIC < 85%) exhibit highly overlapping spectral profiles. This overlap is consistent across 

the other subplots, such as the bottom-left comparison between spectrum 1 (TIC: 62.4) from class 1 and 

spectrum 112 (TIC: 77.3) from class 2, as well as the bottom-right comparison between spectrum 29 

(TIC: 70.5) from class 2 and spectrum 165 (TIC: 81.3) from class 3. 

A high TIC sample (spectrum 278, TIC: 90.2) is included as a reference curve across all subplots 

in Fig. 10. This sample belongs to TIC class 4 (TIC ≥85%), showing spectral characteristics that are 

different from its neighbouring lower-TIC classes. Particularly in the first absorption peak (1100 nm - 

1200 nm) and the broader absorption region between 1300 nm and 1500 nm. These different features 

are more easily separable compared to the minor variations observed among samples from adjacent 

lower TIC classes, where the spectral curves are largely overlapping.  

The spectral similarity between samples from neighbouring classes suggests that the spectral data 

contains features that are difficult to distinguish using traditional methods. This overlap likely arises 

because the differences in TIC values may not produce sufficiently unique spectral signatures across the 

wavelengths measured using the current NIR spectrometer. Additionally, the presence of noise, 

variations in coal/stone dust particle sizes and environmental uncertainty can also affect spectral 

differences between classes.  

4. CONCLUSIONS AND FUTURE WORK 

This study presented an end-to-end convolutional neural network (CNN) model with residual blocks for 

total incombustible content (TIC) based classification of coal/stone dust samples using Near-Infrared 

(NIR) spectral data. A total of 300 samples were used in the study, with 240 samples allocated for 

training and 60 samples for testing. Despite the relatively limited dataset size, the tested residual CNN 

model demonstrated encouraging results, particularly in predicting high TIC samples (TIC ≥ 85%), 

where distinct spectral patterns enabled high precision and recall. This indicates the potential of the 

residual 1D CNN architecture to process high-dimensional spectral data and capture both local and 

global features for TIC predictions in coal/stone dust samples.  

However, the study also identified key limitations that constrain the model’s overall performance. 

Data imbalance, particularly the minority of low TIC samples (TIC < 70%), and the significant spectral 

similarity between neighbouring TIC classes, 70–80% and 80–85%, severely impact the model’s ability 

to distinguish the minor differences between classes. These factors lead to high misclassification rates 

in certain TIC ranges, especially for low TIC samples. Furthermore, the current CNN model has not 

been fully optimized; the architecture and hyperparameters were kept constant to focus on evaluating 

the impact of residual blocks. As a result, there remains significant potential for improving the model's 

performance through systematic optimization. 

Future work will focus on overcoming these challenges by: 

1) Addressing data imbalance; Improving class representation by collecting additional data from 

samples belonging to the minority TIC ranges to balance the dataset. 

2) Enhancing feature separability; Applying advanced spectral preprocessing methods, such as 

derivatives or wavelength selection, to amplify minor differences between similar spectra and 

reduce spectral overlap. 
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3) Optimizing the deep learning model; Utilizing automated hyperparameter tuning techniques, such 

as Bayesian optimization, to refine key parameters for improved classification accuracy and 

generalization.   
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