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A b s t r a c t  

This study explores the use of advanced drone technology with multiple sensors to improve the detection and 

mapping of fault zones. The goal is to validate a multifaceted approach using LIDAR, multispectral cameras, and 

thermal imaging, providing a comprehensive analysis of the Earth's surface. LIDAR technology plays a critical 

role by creating high-resolution digital elevation models (DEMs) and digital surface models (DSMs). These 

models offer detailed depictions of terrain topography, crucial for identifying subtle variations associated with 

fault lines. LIDAR's ability to see through vegetation also aids in delivering a clear terrain representation, 

irrespective of surface cover. Multispectral cameras capture images across various wavelengths, enabling the 

analysis of vegetation health through indices like GNDVI, NDVI, MSAVI, and VARI. These indices indicate 

geological disruptions, such as fault zones, since vegetation health often correlates with underlying anomalies. 

Thermal imaging adds another dimension by detecting minor temperature fluctuations on the ground's surface. 

These variations can signal active faults, revealing friction or geothermal activities beneath the surface. To verify 

the sensor data accuracy, a site visit was conducted, comparing drone findings with actual soil profile samples. 

This ground-truthing step is vital for confirming that remote sensing data reflects real-world conditions accurately. 

Overall, the study shows that a multisensorial approach using drones significantly enhances fault zone detection 

and analysis. This integrated method serves as a potent tool for geological research, aiding in understanding fault 

dynamics and contributing to natural disaster preparedness. 
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1. INTRODUCTION 

Recent advancements in Unmanned Aerial Vehicles (UAVs) have immensely impacted the mining 

industry, providing innovative research possibilities and powerful analytical tools. As described by 

Shahmoradi [1], drones equipped with advanced sensors play a pivotal role in monitoring mine 

conditions, enhancing risk management, and optimizing operations. They offer high-resolution data 
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crucial for accurate terrain mapping and hazard identification, which leads to improved resource 

management efficiency. 

The influence of mining activities, particularly near tectonic fault zones, on the surrounding 

environment is considerable. Such operations can result in landslides, subsidence, and damage to 

infrastructure like roads and buildings [2,3]. The European Union Directive 2011/92 [4] emphasizes the 

need for comprehensive environmental impact assessments to address these effects. In our study, we 

focus on whether UAV technology can effectively monitor the Viersen fault zone near the Garzweiler 

II mine in western Germany, a zone potentially activated by mining activities. 

Johansen et al. [5] present the rehabilitation of open-cut coal mines further illustrates how drones 

assess environmental recovery, tracking changes and assessing vegetation health to ensure effective 

reclamation efforts. Moreover, the Kim et al. [6] underscores the utility of drones for monitoring mine 

structures through 3D imaging, predicting future changes essential for sustainable mining practices. 

Together, these insights demonstrate the versatility of drone technology, enabling a 

comprehensive and integrated approach to managing environmental and operational challenges in 

mining. By transforming traditional methods of supervision and analysis, drones provide a precise and 

dynamic framework essential for addressing the complexities of mining activities and ensuring long-

term geological stability and sustainability. 

Table 1. Brief overview over UAV application in land and water monitoring incl. references 

UAV Application Publication | Reference 

environmental monitoring (multispectral) [7-10] 

monitor water acidity and effects of mining activities (hyperspectral) [11-14] 

detection of disaster-affected areas (thermal) [15-17]  

monitoring of post-mining waste heaps [18,19, 140] 

inspection of the oil, gas, and mining industries [20-24]  

surface scanning enables / digital terrain models and orthophotos (laser) [25, 140]  

landslides [27-39]  

stream reclamation [26]  

identification of geological structural elements [40,41]  

slope stability observations [42,43]  

fault identification [38, 44-47]  

 

In this study, we utilized drone flights equipped with multispectral, thermal cameras, and laser scanners. 

Our The goal was to use unmanned aerial vehicles to monitor the possibly mining induced activatede 

Viersen fault zone located near the Garzweiler II mine in western Germany, as its observation is very 

important to prevent possible consequences. To date, fault identification in the literature has been based 

on calculated digital terrain models. However, in this study, we used multisensory monitoring 

(multispectral data, thermal data, and point clouds) to reconstruct the fault's location. The integration 

and fusion of the obtained data allow for the visualization of the fault's location and its impact on the 

surrounding environment. Using multisensory monitoring, it is possible to reconstruct the fault's 

location, which will enable the future application of this method for mapping active faults and assessing 

seismic hazards for areas near open-pit coal mines – thus, the base for a geomonitoring concept. 

2. STUDY AREA 

The study area is located in the western part of Germany, near the district of Mönchengladbach – 

Sasserath (Fig. 1), and to the north of the Garzweiler II open-pit coal mine. 
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Fig. 1. Localization of study area. Source of basemaps: ESRI (left), Soil Map of NRW 1:50000 – Geological 

Survey of North-Rhein Westphalia, Data License – Germany – attribution - version 2.0 (right) [48] 

2.1. Geological Research 

Mönchengladbach-Sasserath is an area with a complex geological and tectonic structure, located within 

the Lower Rhine Valley, which is part of a larger tectonic structure known as the Lower Rhine Rift. This 

area is characterized by a series of sedimentary basins formed as a result of tectonic subsidence during 

the Tertiary period [49]. The main tectonic structures of this area are associated with normal faults 

oriented NW-SE [49,50,55], including the Rur, Erft, Swiss, Jackerather Horst, and Viersen faults. These 

faults are responsible for the formation of deep sedimentary basins filled with marine, fluvial, and deltaic 

sediments. As noted by Klostermann [49], the boundary between the western and eastern parts of the 

Lower Rhine Bay (German: Niederrheinische Bucht) runs along the western edge of the Viersen fault. 

The Tertiary sediments, which dominate the subsurface of Mönchengladbach-Sasserath, consist 

of the Cologne Formation, the Inden Formation, and the Hauptkies Formation, which contain lignite 

seams as well as numerous clastic interbeds of fluvial and marine origin [51,53,54]. The most important 

lignite seams in this area are Morken, Frimmersdorf, and Garzweiler [53,58], which reach a thickness 

of up to 100 meters [52,57,59]. In the later stages of sedimentation during the Pliocene, the fluvial 

sediments of the Rotton and Reuver formations covered the older units, creating a complex stratigraphic 

record of the tectonic and sedimentary development of this region [57]. 

As a result of ongoing tectonic activity and erosion processes, these structures have been partially 

deformed, affecting the complex geometry of the coal seams and other stratigraphic features of this 

region [51,56]. Despite these complexities, accurate stratigraphic correlation is possible thanks to 

numerous geological studies, including the analysis of drilling logs conducted in this area [51]. 

2.2. Seismical Research 

The literature, particularly the works of Ahorner [60,61], emphasizes the historical seismicity and 

contemporary tectonic activity in the Rhenish Massif, which affects the Mönchengladbach-Sasserath 
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research area. Ahorner [61] points out that the pattern of seismotectonic displacements in Central 

Europe, including the Lower Rhine Valley, is the result of complex tectonic interactions that can lead 

to significant earthquakes, such as the one that occurred in Liège in 1983. The most recent earthquake 

with a magnitude of 5.9 occurred on April 18, 1992, near the city of Roermond (Netherlands) [55,56]. 

Camelbeeck et al. [55] provide a detailed analysis of the significance of studies on active faults and 

seismicity in the context of assessing long-term seismic activity (1382-1992) and the maximum possible 

earthquake magnitude in north-western Europe (Fig.2), including the Sasserath region. The authors note 

that the Lower Rhine Rift, where Sasserath is located, is one of the most tectonically active intraplate 

areas in Europe. Faults such as the Rurrand and Viersen, which run through this region, can be sources 

of significant tectonic movements and associated seismic activity [56,62,63]. 

 

 
Fig. 2. Seismicity between the Lower Rhine Embayment and the southern North Sea [55] 

Gold et al. [64] and Grützner et al. [65] also provide evidence of increased fault activity in the late 

Quaternary, which may indicate a heightened seismic risk in the future. Specifically, Grützner et al. [65] 

document surface ruptures associated with the Rurrand fault, suggesting that these faults remain active 

and could lead to significant seismic events. Reicherter et al. [56] add that the influence of Alpine 

tectonics north of the Alps, including in the Lower Rhine Valley, contributes to the complex tectonic 

dynamics in the region, potentially increasing seismic risk and affecting the development of tectonic 

structures in the Sasserath area. Geophysical studies and seismic modelling have shown that there are 

significant differences in sediment thickness in the region, which affects the propagation of seismic 

waves and may increase the risk of local earthquakes [66,67]. Additionally, the continuous withdrawal 

of groundwater and mining activities in the lignite mining area can also impact land stability and induce 

seismic activity around the Erft fault [68]. Furthermore, Petri’s [69] research highlights the impact of 

mining activities, particularly in the context of lignite extraction in the Rhenish Mining District, on slope 

stability and induced seismic activity. The exploitation of resources in this region, combined with natural 

tectonic activity, may lead to further surface deformations and an increase in seismic hazards. In 
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conclusion, the Mönchengladbach-Sasserath area is a region with a high tectonic risk, with active faults 

that are continuously monitored due to their potential to generate significant seismic events. Geological 

and seismological studies suggest that this region will remain susceptible to seismic activity in the future, 

necessitating further research and risk management measures. 

2.3. Mining Activity in Garzweiler II 

Garzweiler II is one of the largest open-pit lignite mines in Germany (Fig. 3), situated in the Rhenish 

Mining District in North Rhine-Westphalia and operated by RWE Power AG. The mine, covering an 

area of approximately 48 square kilometers, has been a key source of lignite since mining activities 

began in the 1980s, with full-scale operations commencing in the 1990s. Annually, Garzweiler II 

produces around 35 million tons of lignite, which is primarily used to fuel nearby power plants, 

providing a significant portion of Germany's electricity supply.  

The mining operations have had substantial environmental and social impacts, particularly 

through the resettlement of thousands of residents from villages within the mining area. This process 

has involved extensive landscape alterations, including the removal of high potential topsoil (brown, 

para brown and black soils on Loess) and the relocation of infrastructure such as roads and railways. 

RWE has been actively involved in these resettlement efforts and has undertaken land reclamation 

projects aimed at restoring the mined land for future uses, including agricultural and recreational 

purposes. 

Garzweiler II has also been at the center of environmental debates, particularly in the context of 

Germany's energy transition and the country's goals to reduce carbon emissions. While the mine is 

crucial for meeting current energy demands, it presents challenges in balancing these needs with 

environmental sustainability. RWE has faced criticism from environmental groups and local 

communities regarding the long-term environmental impact of lignite mining, especially its contribution 

to CO2 emissions. In response, RWE has committed to phasing out lignite by 2038, in line with 

Germany's coal exit plan. 

 

 
Fig. 3. Garzweiler open-pit lignite mines 



THE USE OF MULTISENSOR DRONE MONITORING TO FAULT’S ZONES IN AREAS AFFECTED  

BY MINING ACTIVITIES 

113 

 
 

3. METHODOLOGY 

The methodology of drone flights involves a series of steps and procedures aimed at ensuring safety, 

regulatory compliance, and achieving the desired outcomes from the flight. First, the flight must be 

carefully planned, considering the mission's objective as well as the local topography, airspace obstacles, 

and weather conditions, including wind speed, maximum gusts, precipitation, and air temperature. Next, 

it is essential to check whether the area in question is subject to restricted access and obtain any 

necessary permits (such as residential areas, airports, industrial or military zones) in accordance with 

local drone flight regulations. In Germany, the legal basis at the national level (LuftVG 

(Luftverkehrsgesetz) [70], LuftVO (Luftverkehrs-Ordnung) [71], LuftVZO (Luftverkehrs-Zulassungs-

Ordnung[72] )) has been adapted by the "Act to adapt national regulations to Commission Implementing 

Regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned 

aircraft" [73]. According to the law all drone pilots of FZN owns a license covering A1, A2 and A3 

level.  

The next step is a risk analysis, which involves identifying potential hazards and risks associated 

with the flight and developing contingency plans. After the planning stage, the drone must be prepared 

for flight. This process involves conducting a pre-flight inspection, which includes checking the drone's 

technical condition, including the batteries, engines, navigation systems, and communication. It is also 

important to ensure that the software and maps are up-to-date and that all settings are configured for the 

planned flight. The next stage is the execution of the flight, during which flight parameters such as 

battery level, GNSS signal quality, altitude, and flight speed must be monitored. In case of any issues, 

it is important to be prepared to implement previously developed emergency procedures. In all flights 

there are in minimum two pilots involved. One as the drone controller the other as airspace observer – 

both with equal qualification. 

After the flight, the collected data is analyzed and processed. Depending on the mission's 

objective, this may involve image processing, 3D models creation, measurement analysis, or the 

preparation of an inspection report. It is also advisable to review the entire flight process to identify 

areas for improvement and optimize future missions. Such a systematic methodology ensures safe and 

effective drone flights and the achievement of intended goals. 

3.1. LiDAR 

LiDAR technology (Light Detection and Ranging) used as a sensor during drone flights is increasingly 

gaining popularity due to its ability to precisely map terrain, especially in hard-to-reach and vast areas 

[74]. This technology enables the collection of 3D topographical data of landscapes [74] and the study 

of vegetation, including its density, surface area, and structure [74-77]. 

Thanks to point clouds obtained by the laser scanner, it is possible to create a grid of 

triangles/squares to generate a Digital Surface Model (DSM) and a Digital Elevation Model (DEM). 

Bater and Coops [78]. present in their article an assessment of errors associated with the interpolation 

of digital terrain models derived from LiDAR data. This study allows understanding how different 

interpolation methods (Kriging, nearest neighbor method, or inverse distance weighting – IDW) can 

affect the quality and accuracy of the generated models. Hancock [79] also conducted studies on the 

impact of different mesh modeling techniques on the resulting terrain model. In generating digital terrain 

models, it is particularly important to consider the variability of spatial data, so the choice of 

interpolation method should be based on the specifics of the terrain and the purpose of the analysis. 

As indicated by Lin et al. [74], although the spatial resolution of terrestrial LiDAR data is 

significantly higher than that of aerial data, the point density significantly decreases as the scanner's 

distance from the object increases. To obtain a dense point cloud across the entire area of interest, it is 
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often necessary to position multiple ground-based LiDAR scanning stations. A registration process is 

required to integrate individual scans into a single mapping framework, which involves measuring 

several ground control points (GCP) or manually selecting common points from overlapping point 

clouds. Due to the prolonged duration of fieldwork and data processing, terrestrial LiDAR scanning is 

usually limited to selected areas of interest, as larger-scale analyses are impractical. 

Compared to terrestrial LiDAR, research using UAVs offers significant advantages, such as lower 

equipment costs, faster execution times, ease of deployment, and fewer limitations in fieldwork [80, 81]. 

The resolution and accuracy of SfM methods are generally comparable to terrestrial LiDAR, and both 

technologies show good agreement with GNSS data [81,82].  However, UAV photogrammetry is more 

susceptible to environmental conditions, as 3D reconstruction from images is more difficult in low-

texture areas. Studies also show a lack of quality assessment of UAV photogrammetry in various 

geomorphological environments [80,82,83]. Thanks to recent advances in UAV and LiDAR 

technologies and reduced integration costs, UAV LiDAR is gaining popularity in fields such as forestry, 

archaeology, and infrastructure monitoring [74, 83-89]. 

In this research we used the DJI Zenmuse L1 (Fig. 4), who is an advanced LIDAR sensor 

developed by DJI, designed for use with drones such as the DJI Matrice 300 RTK. This device is 

equipped with a Livox LIDAR module, capable of emitting up to 240,000 points per second, allowing 

for rapid and precise 3D data collection. The Zenmuse L1 is characterized by its high accuracy, offering 

vertical accuracy within 5 cm and horizontal accuracy within 10 cm when using RTK, making it an 

extremely precise tool for mapping and engineering applications. Additionally, the sensor features a 20 

MP RGB camera with a mechanical shutter, enabling the capture of high-resolution images that can be 

integrated with LIDAR data, facilitating the creation of photorealistic 3D models. The Zenmuse L1 

offers multi-directional scanning with a 70° horizontal and 4° vertical field of view, allowing data to be 

collected over a wide area in a single pass. The sensor also includes a built-in IMU (Inertial 

Measurement Unit), which accurately tracks the drone's movements and positions LIDAR points, 

significantly enhancing the quality and precision of the collected data [90]. 

 
Fig. 4. DJI M300 with DJI Zenmuse L1 

  



THE USE OF MULTISENSOR DRONE MONITORING TO FAULT’S ZONES IN AREAS AFFECTED  

BY MINING ACTIVITIES 

115 

 
 

3.2.  Multispectral Sensors 

Color aerial photography and infrared images have been used to monitor plant growth [91-97]. 

Currently, these techniques are being revisited for spatial variability analysis in fields, which is crucial 

for precision agriculture management because they allow for rapid image acquisition during key stages 

of crop development [98-107].   

Unmanned Aerial Vehicles (UAVs) enable the use of lighter and more compact sensors. Drones 

can fly at lower altitudes than manned aircraft, which increases safety and improves the spatial resolution 

of the images [99-107].   

In this research we used the DJI Phantom 4 Multispectral is a drone equipped with a multispectral 

cam-era, specifically designed for applications in precision agriculture, vegetation monitoring, and 

environmental research. This drone features a multispectral camera system consisting of six separate 

cameras, five of which capture images in different spectral bands, including Blue, Green, Red, Red 

Edge, and Near-Infrared, while the sixth camera is a standard RGB camera (Fig. 5). Each of the cameras 

has a resolution of 2 MP, allowing for the collection of detailed data in specific spectral bands, and the 

RGB camera additionally captures high-quality images in standard colors. The DJI Phantom 4 

Multispectral is equipped with an integrated GNSS/RTK system, which provides high positioning 

accuracy, crucial for tasks that require precise terrain map-ping, such as crop mapping or soil studies. 

Additionally, the drone features a sun-light sensor mounted on top, which measures solar radiation at 

the time of image capture, enabling the calibration of camera data and yielding more accurate results 

regardless of lighting conditions. With these features, the DJI Phantom 4 Multispectral is an extremely 

effective tool for crop management and environmental studies [108].   

 

 
Fig. 5. DJI Phantom 4 Multispectral 

 

Drone technology has rapidly developed, and their integration with modern sensors and positioning 

systems (GPS and GNSS) has significantly increased since 2010 [109-111]. The availability of 

affordable and easy-to-use devices has made UAVs a common tool in agriculture [111-114]. 

Vegetation indices are important because they provide key information about the condition of 

vegetation, its distribution, and changes in ecosystems on a large scale. They allow for monitoring plant 

health, assessing crop productivity, and tracking environmental changes, which has direct applications 

in agriculture, natural resource management, environmental protection, and climate research 

[109,115,116]. In this study, the calculated indices used include NDVI, GNDVI, VARI, and MSAVI. 
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Normalized Difference Vegetation Index (NDVI) is a metric used to assess vegetation health 

based on the analysis of satellite or aerial images, including data from drones equipped with 

multispectral cameras. NDVI is one of the most widely used indices for monitoring plant health, crop 

productivity, and changes in plant ecosystems. Its operation is based on the difference between light 

reflected in the near-infrared range (NIR) and light reflected in the red range (RED) (Formula 3.1) [117-

119]. 

  

                𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷                         (3.1) 

 

Healthy, actively photosynthesizing plants strongly reflect light in the near-infrared range while 

absorbing light in the red range. NDVI is expressed as a value ranging from -1 to +1, with high values 

(close to +1) indicating lush and healthy vegetation, low values (close to 0) indicating areas with sparse 

vegetation or plants under stress, and negative values potentially indicating the absence of vegetation or 

the presence of other surfaces, such as soil or water [120]. 

Green Normalized Difference Vegetation Index (GNDVI) is a metric used to assess vegetation 

health, similar to NDVI, but it utilizes light reflection in the green spectrum (Green) instead of the red 

spectrum (Red). GNDVI is particularly useful in precision agriculture and plant research, especially for 

plants more sensitive to water and nitrogen stress, which are better reflected in the green spectrum. The 

operation of GNDVI involves calculating the difference between light reflected in the near-infrared 

(NIR) range and light reflected in the green range (Green) (Formula 2) [121-123]. 

 

𝐺𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝐺𝑅𝐸𝐸𝑁

𝜌𝑁𝐼𝑅+𝜌𝐺𝑅𝐸𝐸𝑁      (3.2) 

 

Healthy and actively photosynthesizing plants reflect light in the near-infrared range while also 

reflecting some light in the green range, which is measured by the GNDVI index. GNDVI values range 

from -1 to +1, where high values (close to +1) indicate healthy, lush vegetation, often in better condition 

than suggested by NDVI values, particularly in the context of water and nitrogen stress. Low GNDVI 

values (close to 0) indicate less healthy or stressed vegetation, while negative values usually indicate 

the absence of vegetation or the presence of other surfaces, such as soil or water. GNDVI has wide 

applications in precision agriculture, enabling better monitoring of plant health, especially in the context 

of water and nitrogen stress, which is crucial for crop management. This index allows for the early 

identification of stressed areas, which in turn enables quicker responses to issues related to water or 

nutrient deficiencies. 

Visible Atmospherically Resistant Index (VARI) was designed to minimize the impact of 

atmospheric conditions on multispectral data recorded in the visible spectral range (green, red, blue) 

[124]. This index allows for more effective monitoring of vegetation under variable atmospheric 

conditions, such as fog or smoke, which can interfere with the measurements of other indices like NDVI. 

The Formula 3.3 for VARI is: 

  

𝑉𝐴𝑅𝐼 =
𝜌𝐺𝑅𝐸𝐸𝑁−𝜌𝑅𝐸𝐷

𝜌𝐺𝑅𝐸𝐸𝑁+𝜌𝑅𝐸𝐷−𝜌𝐵𝐿𝑈𝐸                                    (3.3) 

 

This index is particularly useful in situations where atmospheric conditions may affect the quality of the 

data, allowing for more stable vegetation analysis across different environments. 
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Modified Soil Adjusted Vegetation Index (MSAVI) is a vegetation index designed to reduce the 

influence of soil on vegetation measurements, especially in areas with sparse vegetation where the soil 

is more visible. MSAVI is a modification of the standard SAVI (Soil Adjusted Vegetation Index) [125], 

introducing a soil adjustment factor that improves the accuracy of measurements in these challenging 

conditions [126].  The Formula 3.4 for MSAVI is: 

 

            𝑀𝑆𝐴𝑉𝐼 =
2𝜌𝑁𝐼𝑅+1−√(2𝜌𝑁𝐼𝑅+1)2−8(𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷) 

2
                                                           (3.4) 

 

MSAVI is particularly useful for analyzing vegetation in areas with sparse coverage, where standard 

indices might be less accurate due to the visibility of the soil. These indices enable more precise 

monitoring and management of vegetation health, which is crucial in precision agriculture and 

environmental research. 

3.3.Thermal Sensors 

In recent years, similar to other applications of UAVs, there has been a significant increase in studies 

using thermal imagery from drones in agriculture and ecology [127]. Although the use of thermal remote 

sensing in forestry and ecology remains limited, initial research confirms its usefulness in areas such as 

fire detection [128], wildlife monitoring [129,130], assessment of water availability in ecosystems [131], 

and evaluation of plant growth and productivity [132]. Thermal sensors integrated with drones have 

great potential in applications that require precise temperature data with high spatial and temporal 

resolution, such as detecting tree diseases [133], assessing water stress in crops [134], and analyzing 

transpiration and land surface temperature changes [135]. 

Thermal infrared (TIR) remote sensing is considered an effective tool for collecting, analyzing, 

and modelling energy fluxes and temperature variations [136]. Traditional platforms, such as aircraft, 

satellites, or ground systems, provide valuable data on a regional scale, but their use is limited by high 

costs and complex operation. In comparison, small unmanned aerial systems (UAS) offer many ad-

vantages, including lower operational costs and greater accessibility [137]. 

The DJI Mavic 2 Enterprise Advanced (Fig.6 right) is a drone designed with professional 

applications in mind, including industrial inspections, search and rescue operations, infrastructure 

monitoring, and crisis management. One of the key features of this model is its dual-camera system, 

which combines a high-resolution thermal camera with an optical camera. The thermal camera, with a 

resolution of 640x512 pixels, enables precise detection of temperature differences with an accuracy of 

±2°C, making it extremely useful for inspecting power infrastructure, buildings, and in search and rescue 

missions where it can assist in locating individuals in difficult conditions. The drone is also equipped 

with a 48 MP optical camera, capable of capturing de-tailed images and 4K video. This function is 

particularly valuable for documenting the technical condition of structures or creating precise 3D 

models. The Mavic 2 Enterprise Advanced also offers 32x digital zoom, allowing the operator to closely 

inspect objects from a distance, minimizing the risk of damaging the drone during flights in challenging 

environments. Additionally, the drone is equipped with safety systems such as obstacle avoidance 

sensors that operate in five directions, ensuring safe operation in complex terrain. The drone also 

features an RTK (Real-Time Kinematic) module, enabling precise positioning with centimeter-level 

accuracy, which is crucial for missions requiring high precision. The high-capacity battery provides up 

to 31 minutes of flight time, giving operators ample time to complete necessary tasks [138]. 

The DJI H20T (Fig. 6 left) is a multi-sensor thermal imaging camera designed for use with drones, 

specifically the DJI Matrice series. It combines a thermal camera, a high-resolution zoom camera 

(20MP), a wide-angle camera (12MP), and a laser rangefinder into one unit. The thermal camera offers 
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a resolution of 640x512 pixels, ideal for detecting temperature variations in various applications like 

search and rescue, fire-fighting, and industrial inspections. The zoom camera supports up to 23x hybrid 

optical zoom and up to 200x maximum zoom, while the wide-angle camera provides a broad field of 

view to quickly survey large areas. The laser rangefinder measures distances up to 1,200 meters, crucial 

for mapping and surveying. With an IP44 rating, the H20T is built to withstand harsh environments and 

various weather conditions. It supports intelligent features such as AI Spot-Check and High-Res Grid 

Pho-to, which automate inspection tasks. The thermal camera's radiometric capabilities enable 

temperature measurement for every pixel, making it invaluable for detailed post-flight analysis. This 

payload is primarily compatible with DJI's Matrice 300 RTK, enhancing its operational capabilities 

across public safety, utility inspections, and environmental monitoring [139]. 

 

  

Fig. 6. DJI M300 with DJI Zenmuse H20T (left), DJI Mavic 2 Enterprise Advanced (right) 

4. RESULTS 

4.1. Topographic mapping with using LiDAR UAV 

Figure 7 shows the terrain model with height data and point classification. The terrain is varied in 

elevation, as illustrated by the colour gradient from blue, indicating lower areas, to red light green, 

representing higher areas. The red values are giving by objects above the terrain, such as a power pole 

on the right. Overall, the terrain appears relatively flat, with slight slopes and local elevations, suggesting 

the presence of small hills or depressions. In the higher parts, there are elements visible that may 

correspond to natural elevations, buildings, or other structures. 

 

 
Fig. 7. Terrain model on the basis LiDAR data 
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Figure 8 shows the classification of points in the model, with "Ground Points" dominating, indicating a 

homogeneous ground surface. A few unclassified points may represent the presence of trees, shrubs, or 

non-standard structures. The terrain appears quite open, suggesting that it could be an agricultural area, 

wasteland, or recreational space. 

 
Fig. 8. Classification of the point from LiDAR data 

 

Figure 9 presents a Digital Elevation Model (DEM), showing a height gradient from approximately 118 

to 137 meters, confirming the presence of slight elevation differences. The terrain is surrounded by roads 

and located near built-up areas, suggesting its potential use for agricultural. The entire terrain model 

depicts an area with distinct but minor elevation variations, which is mostly open and sparsely built-up. 

 



120 Marcin PAWLIK, Quynh Anh NGUY, Bodo BERNSDORF, Tobias RUDOLPH, Benjamin HASKE 

 
 

 
Fig. 9. Digital Elevation Model 

4.2. Vegetation indices 

After processing the raw images from DJI Phantom 4 Multispectral, an orthophoto was created with five 

channels: Red, Green, Blue, Infrared Red (IR) and Near-Infrared Red (NIR). Four vegetation indices 

were derived to analyze the vegetation changes in the test area, as shown in the Figure 10. 
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Fig. 10. Map of four vegetation indices: GNDVI (top left), MSAVI (top right), NDVI (bottom left), VARI 

(bottom right) 

NDVI is useful to determine the density of vegetation on a patch of land. A value range of 0.3 to 0.91 

indicates quite dense vegetation cover [120] and the mean is 0.89. Similarly, GNDVI with a value range 

of 0.15 to 0.95 and the mean 0.79 shows that the more intense the values represented by the green colour, 

the higher the vegetation vitality. The MSAVI index, ranging from 0.25 to 0.98 and the mean is 0.93, 

corresponds to the seed and leaf development stage. Lastly, the VARI – the index measures leaf coverage 

and estimate the fraction of vegetation in an image with low sensitivity to atmospheric effects. A higher 

VARI value indicates better vegetation cover, with a value range from 0 to 0.6 and the mean is 0.42 

representing good quality of vegetation cover. 
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4.3. Thermal Orthophotomap 

Thermal images were collected using the DJI Mavic 2 Enterprise Advanced and DJI Matrice 300 with 

DJI H20T (Fig. 11). Again, Orthophotos was created out of the raw data. In the test area marked in blue, 

so-called ‘hot spots’ - locations that show elevated temperature values, were observed in both calculated 

thermal orthophotos. 

 
Fig. 11. Maps of thermal orthophotos from DJI Mavic 2 Enterprise Advanced (left) and DJI Matrice 300 (right) 

5. DISCUSSION 

The study revealed the combination between LiDAR data, multispectral images and thermal images to 

detect the fault zone. The LiDAR data provides highly detailed and accurate information about the study 

area’s surface and its features. This helps create the terrain model that presents the surface of the Earth, 

and DEM that present the Earth’s surface elevations so this is essential for gaining a deeper under-

standing of natural topography. The reason is that possibly detected structures might be a result of semi-

natural processes during the agricultural work in this area. The dent or depression visible in Figures 7 

to 9 together with ploughing etc. might cause soil erosion which can better be assessed using a good 

elevation model.   

Beside vegetation indices derived from multispectral imagery are powerful tools used to assess 

and monitor various aspects of vegetation heath, cover and condition. By analyzing multispectral data 

with these vegetation indices (GNDVI, NDVI, MSAVI and VARI), the study can gain valuable insights 

into the health, structure and dynamics of vegetation across diverse landscapes. In this case all vegetation 

indices calculated and are presented in Figure 10 shows that affected areas and low developed vegetation 

are more or less linear and not related to the erosion processes caused by agricultural work along the 
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depression. Last but not least, from the thermal orthophotos with temperature range reflected from the 

study area, temperature variations in vegetation can be shown. Healthier vegetation typically has lower 

temperatures due to transpiration cooling [120]. The thermal data can also complement the vegetation 

indices above by providing additional insights into the density and distribution of vegetation cover, 

specially under varying environmental conditions. In our case the results shown in Figure 11 showing 

the same structures as the vegetation indices, thus linear structures which are oriented in the same 

direction of the fault.  

As shown in the Figures 10 and 11, the test area located only 39,45 meters and 43,93 meters 

south-west of the fault line given by geological survey maps. It exhibits vegetation changes across all 

four vegetation indices and thermal anomalies due to less covered soil. The generation of a line in the 

mapping process, which is derived from individual bore hole measurements and transferred to a map at 

a target scale of 1:1.500 (Vegetation Indices Map in the Figure 10), scale of 1:2.500 (Thermal Maps in 

the Figure 11), must always be viewed with a certain margin of error. This is completely appropriate 

and consistent with the results in Figure 7 and Figure 8. There is a small area located 55,35 meters (at 

the scale map of 1:2500) to the north-east of the fault line that also shows vegetation depressions in the 

Figure 10. However, from Figure 7 and Figure 8 indicated the presence of a utility pole in this area 

(Figure 12). 

 

 
Fig. 12. The utility pole in real-life 
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In addition, field verification, which is shown in Figure 13, shows that there are cracks in the area of 

paved streets, which can be identified with the location of previously detected changes using vegetation 

indicators (Figure 10) and the thermal orthophotos (Figure 11). 

 
Fig. 13. Fault features with Fault Zone and Fault Points 

A comparison with Moudrý et al. [140] study reveals notable methodological and conceptual 

differences, highlighting the broader scope and integrative nature of the approach presented in this paper. 

While Moudrý et al. [140] focused on evaluating the effectiveness of LiDAR and UAV imagery under 

"leaf-off" and "leaf-on" conditions for monitoring post-mining landscapes, our methodology is more 

comprehensive in both scope and application. The authors demonstrated that UAV-based structure-

from-motion (SfM) data collected during the leaf-off season can produce digital terrain models (DTMs) 

with comparable accuracy to airborne LiDAR, particularly in forested areas. However, datasets acquired 

during the leaf-on season were significantly less effective because dense vegetation impeded ground 

surface detection, especially in areas with complex canopy structures. 

In contrast, this study not only addresses these seasonal limitations, but also incorporates a 

synergistic combination of LiDAR, multispectral, and thermal imagery. This multimodal integration 

allows for a more nuanced interpretation of the terrain, enabling the detection of subsurface structural 

anomalies that are not apparent from elevation models alone. The addition of thermal data-absent in 

[140] provides valuable insight into vegetation transpiration, exposed soil surfaces, and hydrological 

perturbations, which serve as indirect indicators of tectonic activity and geodynamic instability 
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A key strength of this approach is its reduced dependency on seasonal imaging conditions. By employing 

thermal data and vegetation indices (e.g., NDVI, GNDVI, MSAVI, VARI), we are able to monitor 

surface conditions and vegetation health regardless of foliage coverage, including during full vegetation 

periods. This flexibility represents a major advantage over the methodology in [140], where the authors 

explicitly acknowledge the seasonal limitations of passive remote sensing under leaf-on conditions. 

Another important distinction lies in the scale and purpose of the respective analyses. While 

Moudrý et al. [140] examined a larger post-mining site (61 ha) with a focus on ecological succession 

and restoration monitoring, our study focuses on high-resolution investigation of smaller zones to detect 

subtle surface deformations and identify potentially active fault structures. This higher spatial precision 

enables the detection of features such as surface fissures (Fig. 13), which were not addressed in [140]. 

Verification strategies also differ significantly. Although [140] validated their DTMs using 796 

GNSS reference points, no field-based confirmation of surface deformation was performed. In our study, 

field verification corroborated the presence of ground fractures and deformations consistent with remote 

sensing anomalies, thereby enhancing the credibility of our interpretation. 

In summary, our methodology advances remote sensing applications by integrating topographic, 

spectral, and thermal datasets, supported by ground-truth validation. Compared to [140], our approach 

not only overcomes seasonal limitations and increases spatial precision but also facilitates the 

identification of geodynamic phenomena with direct relevance to infrastructure planning, geotechnical 

risk management, and land use in post-mining regions. This Figure 14 displays drone data (NDVI, 

thermal orthophotomap, DEM) for tectonic fault detection, overlaid with a known fault line from 

geological survey NRW. The top layer, NDVI (green), indicates vegetation health; anomalies could 

suggest soil/water changes due to faulting. The middle layer, a thermal orthophotomap (purple-yellow), 

shows temperature variations; thermal anomalies may point to fault-related heat. The brown line from 

geological survey NRW represents the known Viersen fault. The bottom layer, DEM (yellow-orange-

green), illustrates topography; sudden elevation changes often mark faults. The analysis aims to confirm 

and precisely locate the fault by comparing these drone-derived anomalies to refining geological 

understanding. 
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Fig. 14. Schematic presentation of: (down) Digital Elevation Model, (middle) thermal orthophotomap 

and (top) Normalized Difference Vegetation Index. Fault zone (brown line) data was collected from 

Geologischer Dienst NRW. Source of Basemaps: Digital Orthophoto from Bezirksregierung Köln  

6. CONCLUSIONS 

The study demonstrates that effective fault zone detection relies not merely on the quantity of data but 

on the complementary value provided by different sensor types. The integration of LiDAR, 

multispectral, and thermal data enables cross-validation of surface features that might remain ambiguous 

when using single-sensor analyses. 

This multi-sensor approach significantly reduces dependency on seasonal and environmental 

conditions. For instance, thermal imaging remains effective even under dense vegetation, while 

vegetation indices help distinguish between natural plant stress and structurally induced anomalies. 

Cross-comparison across spectral, thermal, and structural domains enhances the accuracy of interpreting 

linear features as indicators of fault activity. 

Moreover, the validation of remote sensing results with field observations bridges the gap 

between geospatial analysis and real-world ground conditions, increasing the practical value of the 

method for geotechnical risk assessment and land-use planning. Although the results are promising, 

future research should focus on introducing quantitative performance metrics, identifying potential 

sources of error or false positives, and integrating automation and machine learning to streamline data 

processing. The proposed methodology offers a flexible and scalable tool for geomonitoring, 

particularly in mining areas or tectonically active regions. Its applications include early-warning 

systems, infrastructure planning, and post-mining land restoration. A key conclusion is the importance 

of sensor diversity—limitations inherent in individual methods, such as vegetation interference in 
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LiDAR, atmospheric variability in thermal data, or spectral ambiguities, can be effectively mitigated 

through data fusion. 

Compared to the study by Moudrý et al. [140], which emphasized seasonal and temporal variability in 

vegetation and terrain analysis, this research focuses on the synergy of data types. By incorporating 

thermal data alongside traditional spectral and elevation datasets, the proposed model is less sensitive 

to seasonal changes and therefore more suited for continuous geomonitoring—especially in areas 

affected by tectonic reactivation due to industrial activity, such as the Garzweiler II mine. Early fault 

detection in such high-risk zones can inform infrastructure planning and public safety strategies. 

In conclusion, the UAV-based multi-sensor approach provides a scalable and adaptive method 

for monitoring dynamic landscapes. Its utility extends beyond fault detection to include slope stability 

monitoring, subsidence detection, and post-mining environmental assessments. Future work should 

prioritize the development of automated data fusion techniques, machine learning classifiers, and long-

term data collection to improve model robustness and predictive capabilities. 

Such advancements will support the creation of a more resilient framework for managing 

geohazards in both post-mining and tectonically active areas, ensuring that technology continues to aid 

sustainable land use and infrastructure development. 
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