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A b s t r a c t  

This study presents a numerical analysis of a prefabricated prestressed concrete beam subjected to a three-point 

bending test. The beam has a span length of 4600 mm and cross-section of 240 x 400 mm, and was prestressed 

with a single 7-wire strand with a diameter of 15.2 mm. In order to ensure the propriety and reliability of the 

numerical model of the studied beam, a parametric analysis of the influence of selected model components on the 

determined results was carried out. Using the finite element method (FEM) software Abaqus/CAE by Simulia, the 

following parameters were analyzed: a) the effect of mesh size and meshing method, b) the type and shape of 

elements, c) the method of transferring the prestressing force, d) the effect of passive reinforcement. To check the 

reliability and effectiveness of the model, the obtained numerical results were compared and contrasted with 

analytical solutions, assessing the sensitivity of FEM factors. The results presented in the paper demonstrate high 

agreement between numerical simulations and analytical calculations for the prestressed concrete beam, 

encompassing the deflection and stresses in both the elastic and characteristic states of inelastic ranges. 

Keywords: parametric and numerical analysis, analytical solution, meshing strategy, Abaqus/CAE, Magnel 

diagram 

1. INTRODUCTION  

Concrete is the most popular construction material because of its many advantages, including local 

availability of components, undemanding manufacturing process, the possibility of producing structural 

elements of any shape, as well as good mechanical and physical properties, in particular, compressive 

strength and high durability and many pro-sustainable features, see Brandt [1], Mehta and Monteiro [2], 

Mosley et al. [3]. The main shortcomings of concrete are its low tensile strength, about ten times smaller 

than its compressive strength, and its semi-brittle nature that makes concrete prone to the development 

of cracks, which reduce the stiffness, load-bearing capacity, and service life of concrete structures. In 

order to mitigate the effect of lower tensile strength, prevent cracking, and increase the load-bearing 
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capacity of concrete structures, the concept of prestressing concrete is applied. The calculation and 

design of prestressed concrete structures are challenging due to the concrete’s complex microstructure, 

creep phenomena, shrinkage, chemical hydration, and evolution of self-equilibrated micro-stresses 

occurring in concrete over time, Ulm et al. [4]. In particular, the rheological effects are decisive and 

must be carefully considered in the design of prestressed concrete structures, Ajdukiewicz and Mames 

[5], Knauff and Niedośpiał [6].  

Nowadays, the determination of internal forces in concrete structural elements is facilitated by 

computer programs. However, solving a boundary value problem in the inelastic range due to the 

softening behaviour of concrete, which is a result of cracking, remains still a challenge because the 

problem becomes ill-posed in the mathematical terms. Using the finite element method to analyze 

concrete structures, both reinforced and prestressed, has become an essential tool for today's researchers 

and advanced designers. This is especially true in the analysis of unconventional problems and 

optimization. The significant development of the FEM and its applications to solving various 

engineering problems has been observed since the 1960s, Zienkiewicz et al. [7].  

A new approach to concrete analysis is provided by Hillerborg et al. [8], who combines fracture 

mechanics and FEM taking into account crack formation, and propagation, as well as failure. In 

particular, solving incrementally the nonlinear model, which takes into account crack formation and 

propagation along with the material's tensile strength and physical characteristics, has enabled a more 

realistic and reliable representation of stress states and crack distribution, including the mechanisms of 

failure. Nowadays, numerical simulations have the unquestionable feature that they allow simultaneous 

analysis of the effects of many different factors on the designed component and thus reduce expensive 

and time-consuming laboratory experiments. Among commercial FEM programs, Abaqus/CAE is 

known for its practicality and potential, and its application can be found in references [9, 10, 11]. Al-

Hilali and Izzet [9] present the findings of numerical analyses and experimental tests conducted on six 

prestressed I-beams with various holes in the web. Yapar et al. [10] modeled a scheme developed to 

capture the actual mechanics of a precast prestressed concrete beam across all stages of loading—

manufacture, service, and limit state—and validated through laboratory tests. Lee et al. [11] discuss the 

results of numerical analyses performed for twenty prestressed beams with an external tendon profile 

while considering various parameters in FEM simulations. Wang et al. [12] studied the fire resistance 

of prestressed concrete T-beams using numerical simulations, taking into account the effects of various 

fire modes, concrete strengths, cover and protective layer thicknesses, and prestressing levels. 

A widespread group of designers and scientists emphasize that in EN 1992-1-1 [13], there is no 

clear classification of prestressed structures according to the degree (intensity) of prestressing. Only 

general rules for the design of prestressed elements are given, and limit conditions for characteristic 

normal stresses in concrete and prestressing steel are defined. Monographs [3, 5, 6] have discussed the 

characteristic behavior of prestressed structures, delving into the physical phenomena associated with 

prestressing and their mathematical representations. These studies segmented the analysis of prestressed 

structures into three stages: i) the initial stage, where the element is completed and prestressed; ii) the 

unserviceable state, encompassing immediate and delayed losses of prestressing force and the constant 

load reached its full value; iii) the service stage, where the service load is fully applied, while the value 

of the prestressing force is reduced by ad hoc and delayed losses. It is important to mention that the basis 

of the harmonized national standards was a joint initiative of the CEB and FIP organizations, started in 

the 1960s, providing the fundamental trends and directions for studying concrete structures [14].  

Obtaining reliable results from numerical analyses is a primary goal when developing structural 

models. This minimizes the need to make and test many different sample specimens for examination, 

which is a standard activity in the initial design stage. Improved numerical models can be adapted in 

subsequent studies as long as they are universal and thus valuable for the field. Numerical simulations 
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of prestressed concrete elements require consideration of various mechanical and technical aspects so 

that their models can realistically reflect the behavior of these structures at various stages of 

manufacturing, prestressing, and in-service. The process can be difficult and time-consuming, as it relies 

on a number of parameters, such as the material model, boundary conditions, mesh size, mesh generation 

techniques, prestressing techniques, the effects of bonding and adhesion force distribution at the 

interface of concrete and prestressing strands, or the load-bearing capacity of the connections between 

precast elements and in-situ concrete.  

Detailed computational methods utilize finite element principles to model the distribution of 

forces at the tendon-concrete interface and design the anchorage zone in pre-tensioned concrete elements 

referenced in [15, 16]. The relationships between bond stress-slippage depend on various important 

factors, such as the strength and composition of the concrete mix, method of concreting and maturity 

conditions, thickness of concrete cover, type of prestressing tendons, stress state in tendons, and 

technology of prestress release. These issues are critical and complex in numerical modeling; hence, 

they are still being addressed and are expected to be in future publications. Understanding the 

constitutive laws governing elastic response, elastic-plastic phenomena, fracture mechanics, and failure 

is essential for analyzing concrete structures. This knowledge is crucial for grasping concrete's nonlinear 

behavior, where the determination of stress-strain curves encounters many difficulties.  

For this reason, Lubliner et al. [17] developed a novel plastic-damage model for concrete, further 

advanced by Lee and Fenves [18]  the concrete damaged plasticity (CDP) model, by using the 

concepts of fracture-energy-based damage and stiffness degradation in continuum damage mechanics. 

Two damage variables, one for tensile damage and the other for compressive damage, and a yield 

function with multiple hardening variables are introduced to account for different damage states. The 

CDP model exhibits many advantageous features in numerical analyses of the non-homogeneous and 

non-linear mechanical behaviour of concrete, accounting for strain softening, which is defined as 

decreasing stress with increasing deformations, in both compression and tension.  The state-of-the-art 

of CDP models and the procedure for identifying the constitutive parameters are presented in [19, 20]. 

A similar approach is discussed in the article [21], where a new phenomenological model is presented 

to demonstrate that it is capable of describing the influence of confinement on strength and displacement 

capacity, the presence of irreversible displacements, and the reduction of unloading stiffness, and the 

transition from tensile to compressive failure realistically.  

The present study focuses on improving the numerical model of a prestressed beam to obtain the 

resulting values of stresses and vertical displacements that agree with the analytical solution. The 

parametric analyses considered the effect of varying the size of the finite element mesh, the strategy for 

creating differentiated mesh regions, how the introduction of prestressing force was simulated, and how 

its effect on the stress and strain state of the beam was determined. This research was carried out as a 

preliminary stage of a planned broader research program on prestressed concrete beams made of high-

strength concrete. The concrete's compression and tension properties are described in this study by the 

CDP model, which is specifically designed to simulate the nonlinear behavior of concrete materials, 

particularly under various loading conditions. It effectively accounts for damage and plastic deformation 

in concrete structures, making it essential for accurate assessments.  

2. ANALYTICAL MODEL  

A rectangular beam with a 240 x 400 mm cross-section is supported over a 4600 mm span, as shown in 

Fig. 1. It is designed to carry a live point load of 28 kN in the middle of the span. The beam, made from 

concrete class C50/60, was initially designed to determine the optimum prestressing force and 

eccentricity of the rectangular cross-section with a straight tendon profile. The design was performed in 
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accordance with the specifications provided in Eurocode and fib Model Code [13, 14]. The used 

prestressing steel strand has a yield strength of 1660 MPa, an ultimate tensile strength of 1860 MPa, and 

an elastic modulus of 195000 MPa. All passive reinforcements, whether longitudinal or transverse, had 

a nominal tensile strength of 500 MPa. Figures 1 and 2 depict the beam's geometry and reinforcement 

details.  

 

 

Fig. 1. Reinforcement details of prestressed concrete beam 

 

 

Fig. 2. The cross-section dimensions of the prestressed concrete beam at section A-A   

Vertical forces are not exerted on the beam for a straight tendon profile. However, the ends of the 

beam are subject to a moment Pe, along with an axial force P, resulting in a diagram of the constant 

moment, as depicted in Fig. 3. 

 

Fig. 3. Internal forces induced due to prestressing 
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Fig. 4 shows the stress distribution across the cross-section due to the prestressing force and external 

loading.  

 

Fig. 4. Stresses in the beam with eccentric prestress force 

The stresses at the outer fibers of the beam, given in Fig. 4, are calculated according to Eqns. (2.1) - 

(2.4):   

Transfer stage  

{
 

 σt =
𝑃𝑜
𝐴𝑐
− 
𝑃𝑜𝑒

𝑍𝑡
+
𝑀𝑚𝑖𝑛
𝑍𝑡

                                                           (2.1)

σb =
𝑃𝑜
𝐴𝑐
 +  

𝑃𝑜𝑒

𝑍𝑏
 −  

𝑀𝑚𝑖𝑛
𝑍𝑏

                                                        (2.2)

 

 

Service stage    

{
 

 σt =
𝐾𝑃𝑜
𝐴𝑐

−
𝐾𝑃𝑜𝑒

𝑍𝑡
+
𝑀𝑚𝑎𝑥
𝑍𝑡

                                                      (2.3)

σb =
𝐾𝑃𝑜
𝐴𝑐

+
𝐾𝑃𝑜𝑒

𝑍𝑏
−
𝑀𝑚𝑎𝑥
𝑍𝑏

                                                     (2.4)

 

 

in which 𝑃𝑜 is the initial prestressing force, e is the eccentricity of straight tendon, 𝐴𝑐 is the cross-

section area of concrete, 𝑧𝑡 and 𝑧𝑏 are section moduli [zt = 𝐼/yt , zb = 𝐼/yb] (in mm3), I is the moment 

of inertia, and K is a factor that accounts for the prestress losses. For cross-sections without passive 

reinforcement, K is typically about 0.8 but may be significantly smaller for sections with passive 

reinforcement. 𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥 are bending moments due to the self-weight of the beam alone and self-

weight plus external loads, respectively.  

Numerous design approaches have been proposed to meet concrete stress limits, utilizing 

analytical and graphical techniques. The key to preventing cracking in prestressed members is to 

carefully select appropriate stress boundaries for both tensile stress of concrete at transfer (𝑓′𝑚𝑖𝑛) and 

tensile stress under service load (𝑓𝑚𝑖𝑛), as well as placing limits on concrete compressive stress at 

transfer (𝑓′𝑚𝑎𝑥) and under-service loads (𝑓𝑚𝑎𝑥). The following stress limits have been applied per the 

Eurocode standards used in this case study: 𝑓′𝑚𝑖𝑛 = 0.6 𝑓𝑐𝑡𝑚 limiting tensile stress during transfer and 
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tension is not allowed under service load (𝑓𝑚𝑖𝑛 = 0), and imposing compressive stress limits at transfer 

𝑓′𝑚𝑎𝑥 = 0.6 𝑓𝑐𝑘(𝑡), and at service 𝑓𝑚𝑎𝑥 = 0.6 𝑓𝑐𝑘. To ensure that the stress limits at transfer and under 

full loads are met, equations (2.5-2.8), as tabulated in Table 1, must be satisfied. In the case of a simply 

supported beam, the minimum moment at transfer and the maximum moment at service are governing 

the design, as illustrated in Figs. 5 and 6. These equations are then used to construct the four lines of the 

Magnel diagram in Fig. 7. 

Table 1. Concrete stress limits for service ability limit state design  

Deflection shapes at each loading 

stage 
Stresses equilibrium equations Magnel stress expressions 
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Figure 5. Prestressed beam at 

transfer 

𝑃𝑜
𝐴𝑐
− 
𝑃𝑜𝑒

𝑍𝑡
+ 
𝑀𝑚𝑖𝑛
𝑍𝑡

 ≥ 𝑓′𝑚𝑖𝑛 

(2.5) 

1

𝑃𝑜
≥ 

( 
1
𝐴𝑐
−
𝑒
𝑍𝑡
 )

(𝑓′𝑚𝑖𝑛 −
𝑀𝑚𝑖𝑛
𝑍𝑡

)
 

𝑃𝑜
𝐴𝑐
 + 

𝑃𝑜𝑒

𝑍𝑏
 −  

𝑀𝑚𝑖𝑛
𝑍𝑏

≤ 𝑓′𝑚𝑎𝑥 

(2.6) 

1

𝑃𝑜
≥

(
1
𝐴𝑐
 +  

𝑒
𝑍𝑏
 )

( 𝑓′𝑚𝑎𝑥 +
𝑀𝑚𝑖𝑛
𝑍𝑏

)
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Figure 6. Prestressed beam at 

service 

𝐾𝑃𝑜
𝐴𝑐

−
𝐾𝑃𝑜𝑒

𝑍𝑡
+
𝑀𝑚𝑎𝑥
𝑍𝑡

 ≤ 𝑓𝑚𝑎𝑥 

(2.7) 

1

𝑃𝑜
≥

𝐾 (
1
𝐴𝑐
−
𝑒
𝑍𝑡
)

(𝑓𝑚𝑎𝑥 − 
𝑀𝑚𝑎𝑥
𝑍𝑡

)
 

𝐾𝑃𝑜
𝐴𝑐

+
𝐾𝑃𝑜𝑒

𝑍𝑏
−
𝑀𝑚𝑎𝑥
𝑍𝑏

  ≥ 𝑓𝑚𝑖𝑛 

(2.8) 

1

𝑃𝑜
≤

𝐾 (
1
𝐴𝑐
+ 

𝑒
𝑍𝑏
)

(𝑓𝑚𝑖𝑛 +
𝑀𝑚𝑎𝑥
𝑍𝑏

)
 

 

The blue-shaded area in the Magnel diagram represents the safe combinations of prestressing 

force (P) and eccentricity (e) that ensure the concrete section can handle applied loads without exceeding 

the allowable stress limits for both tension and compression. For the most economical design, the ideal 

choice would be the uppermost point in this area, where 𝑃𝑚𝑎𝑥 = 123 kN, as it minimizes the amount of 

prestressing steel required. However, this option is not feasible because it exceeds the maximum allowed 

eccentricity of (𝑒𝑑𝑒𝑠𝑖𝑔𝑛  =  135 𝑚𝑚), which is a key constraint in the design. As a result, the design 

must use 𝑃𝑜 = 195 𝑘𝑁 at e = 135 mm, which remains within the safe zone, satisfies the eccentricity 

limit, and ensures the section remains structurally sound under all conditions. This approach balances 

safety requirements with practical design constraints while adhering to the permissible limits shown in 

the diagram. 
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Fig. 7. Magnel diagram 

The optimum values for the prestressing force and eccentricity at mid-span when neglecting any 

allowable tensile stress (𝑓𝑚𝑖𝑛 = 0) under the service load are 195 kN and 135 mm, respectively. These 

values are obtained using the equations in Table 1 in combination with the Magnel diagram in Fig. 7. In 

the analysis, stresses and deflections are calculated using the concept of the transformed section, and 

values of characteristic quantities of the cross-section are in Table 2. 

The deflection ∆𝑝 at transfer due to prestressing force 𝑃𝑜 is, 

∆𝑝 =
1

8
(
𝑃𝑜(𝑒 − 𝑟)

𝐸𝑐  𝐼𝑡𝑟
)𝐿2                                                                (2.9) 

where L is the length of the beam, 𝐸𝑐 is the elasticity modulus of concrete, 𝐼𝑡𝑟 is the moment of inertia 

for the transformed section, and r stands for the change in the neutral axis location (𝑟 = 𝑦̅𝑡𝑟 − 𝑦̅). To 

calculate the total displacement, the deflection due to prestressed force, self-weight, and live load should 

be added together.  

Mid-span deflection at the transfer stage: 

∆𝑇 =
1

8
(
𝑃𝑜(𝑒 − 𝑟)

𝐸𝑐𝐼𝑡𝑟
)𝐿2 −

5

384
(
𝑤𝑠𝐿

4

𝐸𝑐𝐼𝑡𝑟
)                                               (2.10) 

Mid-span deflection at the service stage: 

∆𝑆 =
1

8
(
𝑃𝑜(𝑒 − 𝑟)

𝐸𝑐𝐼𝑡𝑟
)𝐿2 −

5

384
(
𝑤𝑠𝐿

4

𝐸𝑐𝐼𝑡𝑟
) −

1

48
(
𝑃𝐿3

𝐸𝑐𝐼𝑡𝑟
)                                   (2.11) 

where 𝑤𝑠 is the self-weight of the beam, and P is the live load. The transformed area (𝐴𝑡𝑟) is 

calculated as  

𝐴𝑡𝑟 = 𝐴𝑐 + (𝑛𝑝 − 1)𝐴𝑝 + (𝑛𝑠 − 1)𝐴𝑠 + (𝑛𝑠 − 1)𝐴𝑠
′                                   (2.12) 

with 𝐴𝑠 being the cross-sectional area of the bottom rebars, 𝐴𝑠
′  – the cross-sectional area of the top rebars 

and 𝑛𝑝 = 𝐸𝑝/𝐸𝑐 and 𝑛𝑠 = 𝐸𝑠/𝐸𝑐 are the ratio of the elasticity modulus of strands and rebars to the 
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elasticity modulus of concrete, respectively. Then, the transformed moment of inertia is calculated as 

follows,  

𝐼𝑡𝑟 = 𝐼 +∑𝐴(𝑖)  ×  𝑑𝑖
2

𝑚

𝑖=1

                                                              (2.13) 

where m is the number of areas; in this case, there are four different types of areas (see Eq. (2.12)), and  

di is the distance from the centre of each area to the outer fiber. Table 2 gathers the values obtained from 

the analytical solution. The stresses along the height of the beam (𝜎33)𝑡𝑟 for the transformed section are 

recalculated from equations (2.4) to (2.8). 

Table 2. Properties of the transformed section 

Parameters Active reinforcement only Passive & active reinforcement 

𝐴𝑡𝑟 (𝑐𝑚
2) 965.9 986.7 

𝑦𝑡𝑟 (𝑐𝑚) 200.8 201.9 

𝐼𝑡𝑟 (𝑐𝑚
4) 129075.1 134356.7 

3. COMPUTATIONAL MODEL 

When performing a finite element analysis of a prestressed concrete beam using Abaqus, various aspects 

must be considered. These include geometry, boundary conditions, material properties, meshing, and 

interpretation of the numerical results. 

3.1 Model geometry 

The model's geometry, including the concrete beam, strands, other reinforcements, and supports, as 

shown in Figs. 1, 2, and 8, was created in ABAQUS/CAE. Geometrical aspects, materials, boundary 

conditions, and interactions were defined at the initial stage. The concrete section was created using an 

8-node 3D solid linear brick with reduced integration (C3D8R) and (C3D8I). Steel reinforcement, 

stirrups, and prestressing tendons were modelled using a 2-node linear 3D truss element (T3D2) as 

described in references [22,23,24,25]. All reinforcements were fully bonded with the concrete using 

embedded technology, which defined concrete as the host material. As a result, rebar elements could 

only have translations or rotations with a degree of freedom equal to those of the host elements 

surrounding them [26]. Selecting the appropriate solid element is crucial for accurately determining 

deflections and stresses in Abaqus. Abaqus provides several common element types, including C3D8, 

C3D8I, and C3D8R. However, each type of element has its characteristics, advantages, and limitations 

that can affect the accuracy of the results. The C3D8 element, for instance, is a general-purpose linear 

brick element that is fully integrated with eight integration points. The C3D8 element is well-suited for 

general-purpose structural analyses, including beam bending problems. However, it is too stiff to bend, 

so we need to refine the mesh to achieve accurate results. The C3D8I element is an advanced version of 

the C3D8 eight-node brick element, designed to provide superior accuracy in solving problems with 

bending and shear deformations. Regarding beam bending analyses, the C3D8I element is an excellent 

choice for obtaining precise deflection and local stresses. On the other hand, the C3D8R element is a 

linear brick element that uses only one integration point, making it a more versatile option, and it has an 

advantage over other types when it comes to detecting damages specified in the CDP model. However, 

it may not be stiff enough for problems involving bending. The stresses and strains are most accurate in 

the middle of the element where the integration point is located. Therefore, small elements are necessary 

to capture stress concentration at the boundary of a structure [27]. 
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Fig. 8. Finite Element Model of the prestressed beam 

3.2 Loads and boundary conditions  

Abaqus provides various boundary condition options to replicate different scenarios, such as fixed 

support, pinned support, and displacement constraints. Properly setting up boundary conditions is crucial 

to simulate the realistic behaviour of the beam precisely. In this study, the ends of the span are pinned. 

U1 and U2 are set to zero to prevent out-of-plane displacement in the X-direction or fall vertically in 

the Y-direction; in order to obtain symmetrical deflection, U3 (Z-direction) was set to zero at mid-span. 

The load was applied using coupling constraints of the type of structural distribution. It is essential to 

define reference points linked to the loading object and support in the history output. This will help 

obtain the complete historical outputs of reaction forces, applied load, and displacements, which can be 

used later for validation purposes and drawing a force-to-displacement diagram. The loads are applied 

in two stages. In the first stage, self-weight, which was defined as the beam's gravitational load, and the 

prestressing force were applied. In the second stage, the beam was first loaded by a design load of 28 

kN and then loaded to failure.  

 

3.3 Interaction 

This study strongly recommends a careful definition of the interaction conditions because they not only 

affect the accuracy of the analysis but also highly affect the convergence of the simulation and analysis 

time. The interaction between the steel reinforcement and strand with the concrete was defined using 

embedded technology; this feature in Abaqus allows us to model all types of reinforcements as truss 

elements, which saves time by reducing the number of elements compared to solid elements, improves 

the chance of converging, and reduces computational efforts. Another essential aspect that should be 

defined in this section is the contact behaviour of the supports. In this study, hard contact property is 

defined, and separation was allowed after the contact, which is significant for PSC beams due to the 

axial force caused by prestressing. Since the friction property is not considered in the analytical solution; 

thus, we assumed frictionless behaviour at the supports. 

3.4 Methods of Applying Prestressing Force  

Two methods were employed for introducing pretension in strands:  
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i) The first method involved applying initial stress, and the applied stress was determined using 

Eq. (3.1), further denoted as AIS models:  

𝜎𝑝 =
𝑃𝑜
𝐴𝑝
 =

195 kN

139 mm2
= 1402.8 MPa                                                 (3.1) 

ii) The second method used the idea of cooling, further denoted as BT models. The magnitude of 

the applied negative temperature utilized in the cooling method is determined using Eq. (3.2) 

[9, 24], 

∆𝑇 = −
𝑃𝑜

𝛼 𝐸𝑝 𝐴𝑝 
                                                                    (3.2) 

where α is the coefficient of thermal expansion (α = 1.2 × 10−5/°C), 𝐸𝑝 and 𝐴𝑝 are the strand’s 

modulus of elasticity and the cross-sectional area of the strand, respectively. In the considered case, we 

have ∆𝑇 = −599.5 °C. 

The value of 𝜎𝑝 should be smaller or equal to 𝜎𝑝,𝑚𝑎𝑥,  𝜎𝑝 ≤ 𝜎𝑝,𝑚𝑎𝑥, and 𝑃𝑜 ≤ 𝑃𝑚𝑎𝑥. Where 𝜎𝑝 and 

𝑃𝑜 are the initial stress and initial prestressing force in the strand, respectively. EN 1992-1-1 [13] defines 

the mean prestressing force at any time (t) and at a certain distance (x) from the active ends of a strand 

as 𝑃𝑚,𝑡(𝑥). This force is equal to the maximum force 𝑃𝑜 also called jacking force 𝑃𝑗 which is applied at 

the active end of the tendon during tensioning, minus the immediate and time-dependent losses. The 

initial force 𝑃𝑜 must satisfy: 

𝑃𝑜 ≤ 𝐴𝑝𝜎𝑝,𝑚𝑎𝑥                                                                      (3.3) 

where  

σp.max is the smaller of {
80% of the characteristic tensile strength (i. e. 0.8 𝑓𝑝𝑘)       

 90% of the characteristic 0.1% proof stress (i. e. 0.9 𝑓𝑝0.1𝑘)
 

3.5 Modelling of Materials  

An accurate representation of the material behaviour in its computational simulation by the finite 

element method is crucial to obtain reliable results. Abaqus is sophisticated software that offers various 

models to define material behaviour, including isotropic, orthotropic, and anisotropic properties. 

Moreover, Abaqus provides a broad range of material models to simulate the behaviour of different 

materials, such as steel, concrete, and composite materials [6, 27]. The material models that we used for 

the prestressed concrete beam are described.  

3.5.1 Concrete  

In this study, a Concrete Damage Plasticity (CDP) model was used for concrete, whose characteristic 

strain-stress relationships for tension and compression are shown in Fig.9. The CDP implemented in 

Abaqus is based on the seminal works of Lubliner et al. [17] and Lee & Fenves [18], and modified 

version of the Drucker-Prager strength hypothesis [28]. Lubliner et al. [17] developed a constitutive 

model for the nonlinear analysis of concrete that takes into account the effects of stiffness degradation 

and strain softening in both compression and tension. These factors lead to a more accurate 

representation of the behaviour of concrete structures under various loads. Szczecina and Winnicki 

performed numerical simulations on a concrete specimen using the CDP model in Abaqus for biaxial 

compression and uniaxial tension tests [29]. The authors recommended that the viscosity parameter 
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should be taken equal to 0.0001 and the dilation angle 5 degrees. Hafezolghorani et al. proposed a 

simplified model for an unconfined prestressed concrete beam. A simplified concrete damage plasticity 

(SCDP) model was created by merging a stress-based plasticity component with a strain-based damage 

model [30]. In a paper [31], Hasan and Darbaz conducted a comparative study of commonly used CDP 

material parameters. Like the previous authors, it was once again emphasized that in selecting the 

various parameters of the CDP model, one must do so very carefully, depending on the specifics of the 

test under consideration.  

 
Fig. 9. Response of concrete to uniaxial loading in tension (a) and compression (b) [6, Abaqus] 

The total strain tensor ε, in the softening branch of stress-strain curves for the compression and 

tension regimes, see Fig. 9, can be additively split into an elastic part 𝜀0
𝑒𝑙  and an inelastic part, 𝜀 ̃

𝑖𝑛, or 

into a part with damaged elastic stiffness, 𝜀 
𝑒𝑙, and an equivalent plastic part, 𝜀̃𝑝𝑙, which can be defined 

as follows  

𝜀 = 𝜀0
𝑒𝑙 + 𝜀 ̃

𝑖𝑛 = 𝜀𝑒𝑙 + 𝜀̃𝑝𝑙                                                             (3.4) 

𝜀0
𝑒𝑙 =

𝜎

𝐸0
,        𝜀𝑒𝑙 =

𝜎

(1 − 𝑑)𝐸0
                                                   (3.5) 

𝜀̃𝑖𝑛 = 𝜀 − 𝜀0
𝑒𝑙                                                                                    (3.6) 

𝜀̃𝑝𝑙 = 𝜀 − 𝜀 
𝑒𝑙                                                                                    (3.7) 

where  𝐸0 is the modulus of elasticity of initial (undamaged) material, and 𝑑 is a damage parameter 

being a scalar measure of the degradation of material stiffness, with 0 ≤ 𝑑 ≤ 1,
and the meaning of limit values:  𝑑 = 0 – undamaged material, 𝑑 = 1 – fully damaged material. The 

stress-strain relationships under uniaxial tension, 𝜎𝑡 − 𝜀𝑡, and compression, 𝜎𝑐 − 𝜀𝑐, loading is 

expressed as  

𝜎𝑡 = (1 − 𝑑𝑡)𝐸0(𝜀𝑡 − 𝜀𝑡̃
𝑝𝑙
)                                                     (3.8) 

𝜎𝑐 = (1 − 𝑑𝑐)𝐸0(𝜀𝑐 − 𝜀𝑐̃
𝑝𝑙
)                                                     (3.9) 

with 𝜀𝑡  and 𝜀𝑐  denoting the total tensile and compressive strains, respectively, and the plastic strains  

 

𝜀𝑡̃
𝑝𝑙
= 𝜀𝑡̃

𝑐𝑘 − (
𝑑𝑡

1 − 𝑑𝑡
) 𝜀𝑡,0

𝑒𝑙                                                           (3.10) 
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𝜀𝑐̃
𝑝𝑙
= 𝜀𝑐̃

𝑖𝑛 − (
𝑑𝑐

1 − 𝑑𝑐
) 𝜀𝑐,0

𝑒𝑙                                                           (3.11) 

where 𝜀𝑡̃
𝑐𝑘 is a cracking strain at tension, 𝑑𝑡 and 𝑑𝑐 are the tension and compression damage variables, 

with 0 ≤ 𝑑𝑡 ≤ 1 and 0 ≤ 𝑑𝑐 ≤ 1,  

𝑑𝑡 = 1 −
𝜎

𝜎𝑡0
                                                                          (3.12) 

𝑑𝑐 = 1 −
𝜎

𝜎𝑐𝑢
                                                                         (3.13) 

The plastic strain is calculated also to ensure that it is positive. A negative value of plastic strain 

(both in compression or tension) would cause convergence issues in the analysis and may result in an 

error and termination of the job in Abaqus. Tables 3 and 4 contain numerical values of the data defining 

the inelastic behaviour of the concrete in compression and in tension, which we used in the CDP model 

implemented in the Abaqus program.  

Table 3. Concrete elastic and plastic properties for the CDP model 

Material parameters C50/60 
Plasticity Parameters 

Dilation angle 30 

Concrete Elasticity 
Eccentricity 0.1 

𝑓𝑏0/𝑓𝑐0 1.16 

Elasticity Modulus 37000 MPa K 0.667 

Poison ratio 0.2 Viscosity parameter 0.001 

Table 4. Inelastic compressive & tensile behaviour data for the CDP model 

Inelastic compressive concrete 

behaviour with damage 

Inelastic tensile concrete behaviour 

with damage 
Yield stress 

(MPa) 

Inelastic 

strain 

Damage 

𝑑𝑐 

Yield stress 

(MPa) 

Cracking 

strain 

Damage 

𝑑𝑡 
22.422 0.0 0 4.100 0.0 0 

27.302 0.000012 0 0.050 0.0015 0.990 

31.834 0.000040 0    

35.981 0.000078 0    

39.701 0.000127 0    

42.948 0.000189 0    

45.666 0.000266 0    

47.791 0.000358 0    

49.248 0.000469 0    

50.000 0.000600 0    

49.795 0.000754 0.003    

48.656 0.000935 0.026    

46.387 0.001146 0.071    

42.807 0.001393 0.143    

37.696 0.001681 0.245    

30.780 0.002018 0.384 

21.719 0.002413 0.565 

18.679 0.002545 0.626 

8.620 0.003134 0.827 
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Extensions of the above relations of the CDP model to a general 3D stress state are defined by the 

two main elements, the stress-strain relationships  

𝝈 = (1 − 𝑑)𝑬0: (𝜺 − 𝜺
𝑝𝑙)                                                            (3.14) 

in which the elastic material stiffness 𝑬0 is reduced by the scalar damage parameter 𝑑, 𝜺 is the total 

strain tensor, and 𝜺𝑝𝑙 is the tensor of plastic strains whose evolution is governed by the flow rule 𝜺̇𝑝𝑙 =

𝜆̇𝒈, where 𝜆̇ ≥ 0 is the plastic loading multiplier, and 𝒈 = 𝜕𝐺/𝜕𝝈 is the plastic flow vector that is 

normal to the plastic potential function G. (2) the Kuhn–Tucker complementarity conditions (loading/ 

unloading conditions), which govern the evolution of the elasto-damage-plastic deformation process 

with damage 

𝐹 ≤ 0,      𝜆̇ ≥ 0,      𝐹𝜆̇ = 0                                                           (3.15) 

wherein 𝐹 is the yield function, or other function definig a scalar threshold value for an irreversible 

process. We remark that also the rate of the damage variables should not be negative, i.e. 𝑑̇𝑡 ≥ 0, 𝑑̇𝑐 ≥
0. For further details, the reader may consult references [27, 17, 18, 32, 33].    

3.5.2 Steels   

The one-dimensional bilinear elastoplastic behaviour and assumption of a perfect bond between 

steel and concrete are used to model rebars and stirrups and their interaction with the concrete. The 

same approach was taken for the strands, considering a 7-wire strand. The properties of the strand 

and other reinforcements are tabulated in Tables 5 and 6. 

Table 5. Properties of the prestressed strands of type Y1860S7 

Nominal 

diameter 

(mm) 

Cross-sectional 

area-𝐴𝑝  

(mm2) 

Characteristic 

breaking force 

(kN) 

Max. breaking 

force  

(kN) 

Yield force  

at 0.1% proof strain 

(kN) 

Number 

of 

strands 

15.2 139 258.5 297.3 223 1 

Table 6. Material properties of structural reinforcements 

Material 
Diameter 

(mm) 

Yield stress 

(MPa) 

Ultimate tensile 

strength (MPa) 

Elasticity modulus 

(GPa) 

Strand 15.2 1660 1860 195 

Longitudinal steel 10 500 575 200 

Stirrups 8 500 575 200 

4. REFINEMENT AND VERIFICATION OF THE FEA MODEL  

The accuracy and reliability of the FEA models were optimized and verified against the analytical 

solution through two phases to ensure that the numerical analysis aligns with the analytical solution. 

Specific parameters were adjusted, and other parameters were changed to minimize differences between 

numerical and analytical results. Ten computational models were developed; nine were reinforced solely 

with active reinforcement (strands only), and model AP-M18-06 has both active reinforcements and 

passive (longitudinal rebars and stirrups). 
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4.1 Phase One: Mesh Refinement and Prestressing Techniques  

Two prestressing methods were examined. To reduce the simulation time, all the models in this phase 

were reinforced solely with active reinforcement. In addition, the analysis in this phase focuses on the 

transfer stage only, as we believe precisely predicting a beam's behaviour during the elastic stage 

provides a strong foundation for anticipating its performance during the inelastic stage. This 

understanding is essential for more reliable and effective simulations at an advanced level. Two sets of 

models were developed based on their prestressing techniques, as outlined in Table 7. Each set 

comprises three models with three different mesh sizes, and the two sets are classified by their 

prestressing techniques. Models in set A utilized predefined stress (initial stress), whereas models in set 

B employed predefined temperature (cooling). As emphasized in references [34, 35, 36], conducting a 

mesh sensitivity analysis is indispensable in the realm of prestressed concrete structures due to their 

complex behavior. Therefore, it is imperative to ensure that the mesh is sufficiently refined to capture 

local effects accurately, specifically local stresses and deflection. To this end, three additional models 

with varying mesh sizes and strategies were examined. Table 8 provides specific details on the meshing 

strategies of these models based on the segmentation shown in Fig. 10. The primary goal of this phase 

was to compare the two methods for introducing prestressing force in ABAQUS and identify the optimal 

mesh size that balances computational efficiency and accuracy for reliable numerical simulations. 

Therefore, the optimal model was identified for further analysis in the subsequent phase following the 

inclusion of passive reinforcement. The maximum element sizes in these models were 25 mm, 20 mm, 

18 mm, 15 mm, 14 mm, and 11 mm. 

Table 7. Models with different mesh sizes, set (A) and (B) 

Models 

set (A) 

Mesh size of 

concrete (mm) 

Mesh size of the 

strand (mm) 

Models 

set (B) 

Mesh size of concrete 

section (mm) 

Mesh size of the 

strand (mm) 

AIS-M25 25 10 BT-M25 25 10 

AIS-M20 20 10 BT-M20 20 10 

AIS-M15 15 10 BT-M15 15 10 

 

 
Fig. 10. Sections with different mesh sizes for models in Table 8 
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Table 8. Models with different mesh sizes 

Models  

(set B) 

Mesh size of concrete sections (mm) Mesh size of 

the strand (mm) Left end Section-1 Middle Section-2 Right end 

BT-M11-08 8 11 8 11 8 5 

BT-M14-10 10 14 10 14 10 5 

BT-M18-06 6 18 6 18 6 5 

 

4.2 Phase two: passive reinforcement added  

In this phase, a new model, AP-M18-06, was developed. It is similar to BT-M18-06 in phase one but 

with an additional feature of passive reinforcement (longitudinal rebars and stirrups). The type of 

element at the middle section of concrete right below the loading point also changed from C3D8R to 

C3D8I to better capture local stresses. This phase was conducted in two stages: the transfer stage and 

the service stage.  

i) In the transfer stage, only gravity and prestressing forces were included, and the beam was 

hogged up, Fig.13 (a). 

ii) The service stage is a continuity of the transfer stage, where the beam was loaded at mid-span 

Fig. 13 (b) to examine the load-bearing capacity of the prestressed beam under service loads.   

5. RESULTS AND DISCUSSION  

The comparison with analytical solutions serves as a significant verification of the numerical approach, 

thereby enhancing confidence in the accuracy of the finite element analysis. This study investigated the 

influence of the prestressing methods and mesh sizes on the deflection and stresses by varying the 

prestressing methods, meshing sizes, and types of elements. The outcomes revealed that finer meshes 

and element type C3D8I captured localized effects, which resulted in more accurate mid-span deflection 

and stress distribution. In contrast, coarser meshes neglected important details, which ultimately affected 

the results. Furthermore, the choice of meshing strategy, types of elements, interaction property, and 

boundary conditions used in this study had critical effects on shortening simulation times, convergence 

of the numerical analysis, and accuracy of the results. Tables 9 and 10 present the verification results of 

the numerical model, along with the percentage errors for phase one and phase two, respectively. 

5.1 Analytical and numerical results for phases one  

 

All the models in this section are solely reinforced with strands and cover only the transfer stage. Upon 

careful examination, it was evident that model BT-M18-06 outperforms all other models in phase one 

and displayed superior results across other models. The stress along the height of the beam (𝜎33) in 

Figure 12 and the analytical results in Table 9 are perfect matches. Additionally, its deflection 

percentage error was only 1.029% (0.012mm). Moreover, the percentage errors of the top and bottom 

stresses were 1,158% and 0.428%, respectively. The percentage errors of deflection and stresses are 

calculated at each stage separately based on Eqns. (5.1) and (5.2). 

∆ 
𝑒 (%) =  

∆𝑎𝑛𝑡 − ∆𝑛𝑢𝑚
∆𝑎𝑛𝑡

 × 100                                                         (5.1) 
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𝜎 
𝑒 (%) =  

𝜎𝑎𝑛𝑡 − 𝜎𝑛𝑢𝑚
𝜎𝑎𝑛𝑡

 × 100                                                         (5.2) 

where, ∆ 
𝑒 is the percentage error of deflection, ∆𝑎𝑛𝑡 is analytical deflection and ∆𝑛𝑢𝑚, is numerical 

deflection. 𝜎 
𝑒 is the percentage error of stresses,  𝜎𝑎𝑛𝑡 and 𝜎𝑛𝑢𝑚 are the analytical and numerical stresses 

at the mid-span of the beam, respectively.  

Table 9. Deflection and normal stresses at the mid-span - Analytical solution vs numerical results – phase one 

Models 
Prestressing 

Methods 

Deflection (mm) Stresses (MPa) 

∆  ∆ 
𝑒  (%) 

Top surface 

stress (𝜎𝑡)  
𝜎𝑡
𝑒  (%)  

Bottom surface 

stress (𝜎𝑏)  
𝜎𝑏
𝑒 (%)  

Analytical 

Solution 
- 1.166 - -1.123 -   5.135 - 

AIS-M25 Initial S 0.9051 22.376 -1.04 7.391 5.041 1.831 

AIS-M20 Initial S 0.9996 14.271 -1.055 6.055 5.056 1.538 

AIS-M15 Initial S 1.083 7.118 -1.069 4.809 5.076 1.149 

BT-M25 Cooling 0.9061 22.290 -1.042 7.213 5.045 1.753 

BT-M20 Cooling 1.001 14.151 -1.056 5.966 5.061 1.441 

BT-M15 Cooling 1.084 7.033 -1.070 4.72 5.077 1.130 

BT-M11-08 Cooling 1.140 1.893 -1.097 2.315 5.08  1.071 

BT-M14-10 Cooling 1.127 3.012 -1.085 3.384 5.089 0.896 

BT-M18-06 Cooling 1.154 1.029 -1.110 1.158 5.113 0.428 

∆ is the deflection, 𝜎𝑡 and 𝜎𝑏 are the top and bottom stresses taken at the mid-span of the beam, 

respectively. 𝜎𝑡
𝑒 and 𝜎𝑏

𝑒 are the percentage errors of top stress (tensile) and bottom stress (compressive) 

at the mid-span, respectively. 

 
Fig. 11. Deflection of the beam at Transfer Stage-Model BT-M18-06 
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Fig. 12. Normal stresses (𝝈𝟑𝟑) - Transfer Stage-Model BT-M18-06 

     
                                    a) Deflection curve                                                           b) Stress curve 

Fig. 13. Mesh convergence curves for deflection and stress at the mid-span 

5.2 Analytical and numerical results for phase two - model AP-M18-06  

5.2.1 Elastic range  

The results presented in this section are for model AP-M18-06. As expected, achieving positive results 

in the simplified models from phase one will lead to positive outcomes in more complex models. During 

the transfer stage, the model showed a deflection percentage error of only 0.274%, equivalent to just 

0.003 mm. Meanwhile, the tensile stress at the top was -1.011 MPa with a percentage error of 0.785%, 

and compressive stress at the bottom was 4.906 MPa with a percentage error of 0.183% as in Table 10 

and Figure 14. a. The maximum tensile stress at the top of the beam during the transfer stages was only 

25% of the characteristic tensile strength (𝑓𝑐𝑡𝑚 = 4.1 MPa), for class 50/60, which falls within the 

allowed range.  

5.2.2 Design for service load of 28 kN within the elastic range 

The beam was designed to withstand a point load of 28 kN at the mid-span without experiencing any 

tensile stresses. The results showed that the beam was fully compressed at the applied load. The stress 

at the top was 4.010 MPa with a percentage error of 4.974%, while the stress at the bottom was 0.1663 

MPa with a percentage error of 1.012%, as shown in Table 10 and Figure 14.b.  
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Table 10. Comparison of analytical solution and numerical results of Model AP-M18-06 

Computational 

Methods 
Loading stages 

Deflection (mm) Stresses (MPa) 

∆  ∆ 
𝑒  (%) top stress (𝜎𝑡)  𝜎𝑡

𝑒  (%)  bottom stress (𝜎𝑏)  𝜎𝑏
𝑒 (%)  

Analytical 

Solution 

Transfer stage 1.096 - -1.019 -   4.915 - 

Service stage -0.039 - 3.820 - 0.188 - 

Numerical 

Results 

AP-M18-06 

Transfer stage 1.093 0.274 -1.011 0.785 4.906 0.183 

Service stage -0.038 2.564 4.010 -4.974 0.166 1.012 

 

Fig. 14. Deflection of a beam – Model AP-M18-06 

5.2.3 Inelastic range (The nonlinear behaviour)  

The beam was loaded to the failure, and the first sign of damage occurred at the bottom surface of the 

mid-span at 𝜎33 = 4.106 MPa, which corresponds to the tensile yield stress of concrete defined in the 

CDP model Table 4. The force required to initiate the first crack was 𝑃𝑐𝑟 = 53.121 kN with a percentage 

error of only 0.148% in comparison to the analytical solution, and the first sign of nonlinearity began 

when the tensile damage parameter in concrete reached 𝑑𝑡 = 0.99, marked as point (C) in Figures 15 

and 16, also check Fig17.c, and this occurred at 𝑃 = 66.076 kN. The results of this section are 

graphically summarized in Figures 15 through 17.  

The force-deflection curve in Figure 15 highlights the beam's behaviour under increasing loads. 

Initially, the curve shows a linear elastic response from point (A) to the first cracking point (B). Beyond 

this, the beam reaches a yield point (C), where plastic deformation begins, resulting in a nonlinear 
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response; the curve rises until the ultimate strength of the strand point (2) and then to the ultimate 

compressive strength at point (D). The curve then shows a gradual increase in deflection with a decrease 

in force; then, the failure occurs at point (E). On the other hand, point (1) represents the yield strength 

of the strand. 

The beam exhibited good stiffness in the linear region, characterized by a steep slope on the force-

deflection curve. Additionally, it displayed ductile behaviour by allowing significant deflection before 

failure, indicating a degree of structural robustness. Upon comparing the numerical results with 

analytical solutions, we observed significant agreement in the linear region but slight discrepancies in 

the nonlinear range. These differences may be attributed to assumptions made in the numerical model 

or material properties not fully captured in the analysis. By providing a thorough explanation of these 

points, we have gained a comprehensive understanding of how the beam behaves under loading 

conditions and can draw valuable insights for further analysis and design considerations. 

 

Fig. 15. Force versus displacement – Model AP-M18-06 

 

Figure 16 illustrates the stress distribution along the height of beam AP-M18-06 at mid-span 

during various loading stages, from prestress transfer to ultimate failure. Initially, compressive stresses 

dominate at the transfer stage (A), followed by the appearance of tensile stress at the bottom of the beam 

at first crack (B) and progressing to full tension damage 𝑑𝑡 = 0.99 at (C). At the ultimate compressive 

strength of concrete (D), the top region experiences maximum compression, while the bottom is 

critically cracked. Finally, at failure (E), the beam undergoes structural collapse, marked by extensive 

cracking and stress redistribution. The stress contours visually represent these transitions. Figure 17 

complements this by visualizing the crack progression using DAMAGET contours. Minor damage is 

concentrated at the bottom mid-span of the beam at the first cracking load. As the load increases, this 

damage propagates upward and outward, and extensive crack propagation throughout the beam indicates 

severe structural damage and an imminent collapse (Fig17.d). Together, these figures provide a 

comprehensive understanding of the beam's behaviour under increasing loads. 
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Fig. 16.Stress along the height of the beam at mid-span at different loading stages – Model AP-M18-06 

 

Notation: the digits preceding e+01 should be multiplied by 10, and the digits preceding e-01 should be divided 

by 10, etc.   

 



254 Brwa BEBANI, Mieczysław KUCZMA, Krzysztof ZIOPAJA 

 
 

 

Fig. 17. Development of beam cracks at mid-span at various loading stages – Model AP-M18-06 

6. CONCLUSIONS  

The study presents a comprehensive and rigorous framework for the analytical and numerical analysis 

of prestressed concrete beams, offering detailed guidance on their behaviour during various stages. The 

findings revealed that the studied parameters substantially influenced capturing the deflection and 

stresses at the mid-span of prestressed concrete beams, highlighting the challenges in capturing real-

world phenomena accurately. The numerical model has been optimized step by step to match the 

analytical calculations. For this purpose, several parameters were investigated, including mesh sizes, 

meshing strategies, element type, and prestressing method. The findings showed a significant impact of 

these parameters on the numerical results.  

 It is essential to compare numerical results with analytical solutions, if available, to ensure the 

model's accuracy. Additionally, analytical and numerical solutions together help us better 

understand structural behavior and the physics behind it. This approach provides a clear 

framework for predicting performance and enables a deeper understanding of how different 

factors influence the beam's response under various loading conditions. 
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 The results obtained were identical when applying prestressing force using either the initial 

stress or cooling methods. 

 The outcomes revealed that the mesh size significantly impacts the accuracy of results; smaller 

mesh sizes yield greater accuracy in detecting deflection and stress.  

 The meshing strategy used not only improved the accuracy of the numerical results but also 

strongly affected the convergence and computation time.  

 The type of elements highly affected the numerical results. The C3D8I was more time-

consuming but resulted in a noticeable improvement in the deflection and stresses in the elastic 

range. However, it's not recommended for use in the inelastic range with the CDP model due to 

producing unreasonable values. The C3D8R was more effective at detecting damages in 

accordance with CDP data in Tables 3 and 4. 

 The study found that utilizing a finer mesh in models BT-M18-06 and AP-M18-06 proves 

beneficial for capturing behaviour from the elastic stage to the inelastic one, showcasing 

noteworthy deflection, stress, and cracking force results.  

 The concrete damage plasticity model (CDP) is a powerful tool for simulating the structural 

responses of prestressed concrete beams at a nonlinear stage. The most common cause of non-

convergence was the concrete material viscosity parameter, specifically at the hardening stage.  

 Ideally, the viscosity parameter of the concrete material in the CDP model is set to zero. 

However, achieving convergence under these conditions is often unlikely for complex systems. 

Therefore, it is advisable to increase this value with caution, as increasing the viscosity 

parameter can significantly affect the results' accuracy, particularly at the beginning of the 

nonlinear region after the tensile damage reaches 0.99%. 

 Future work will concentrate on enhancing the modeling of steel-concrete contact behavior to 

accurately represent bond-slip mechanisms and stress transfer at the interface. This will entail 

further refinement of the numerical model to incorporate advanced material properties and 

nonlinearities. Validation against experimental data will be crucial to ensure the model's 

accuracy and applicability, paving the way for more robust parametric analyses and practical 

applications. 
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