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A b s t r a c t  

This study presents a novel approach to forecasting the evolution of hysteresis stress-strain response of different 

types of soils under repeated loading-unloading cycles. The forecasting is made solely from the knowledge of soil 

properties and loading parameters. Our approach combines mathematical modeling, regression analysis, and Deep 

Neural Networks (DNNs) to overcome the limitations of traditional DNN training. As a novelty, we propose a 

hysteresis loop evolution equation and design a family of DNNs to determine the parameters of this equation. 

Knowing the nature of the phenomenon, we can impose certain solution types and narrow the range of values, 

enabling the use of a very simple and efficient DNN model. The experimental data used to develop and test the 

model was obtained through Torsional Shear (TS) tests on soil samples. The model demonstrated high accuracy, 

with an average R² value of 0.9788 for testing and 0.9944 for training. 

Keywords: deep neural networks, hysteresis loops, mathematical modeling, soil stress-strain curves, cyclic 

loading 

1. INTRODUCTION 

Modeling of soil mechanical response is a fundamental challenge in geotechnical engineering. 

Advanced constitutive models can capture the intricate behavior of soils, but their complexity often 

limits practical applications. For design applications the models usually need to be radically simplified 

and the material properties and loading models are idealized. Although the simplified versions of 

constitutive laws are easier to use in practice, they do not capture the nature of modeled phenomenon 

and might produce results affected by major errors when used for modeling complex soil-structure 

interactions. 

What is more, the decision on which constitutive model to use for a specific practical case is not 

straightforward. In (Lade 2005) over 30 widely available models were presented and compared, and 
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practical aspects of their evaluation were also taken into account. The models were divided into several 

different groups according to the frameworks and the key attributes, such as the shapes of the failure, 

yield, and plastic potential surfaces as well as the hardening parameters. Along with the capabilities of 

each model, the experiments required to calibrate their parameters are given. The study showed that the 

possibilities and disadvantages of constitutive models are not always easy to ascertain, and the models 

differ in the required parameters determining. This complexity has led researchers to explore artificial 

intelligence (AI) techniques as an alternative. 

Artificial neural networks (ANN), offer a way to develop material behavior models directly from 

laboratory test results without explicitly formulating constitutive relations. The use of ANNs in 

constitutive modeling began in the 1990s, focusing on pattern recognition in experimental data. Early 

applications included modeling the behavior of various geomaterials such as soil (Ellis et al. 1995; Wu 

1997), rock (Millar and Clarici 1994; Zhang et al. 1991), and concrete (Sankarasubramanian and 

Rajasekaran 1996).  

By the late 1990s, practical applications emerged, integrating ANN-based models into Finite 

Element (FE) methods for practical applications. Pande and Shin (2002) developed FE codes with ANN-

based constitutive models for risk assessment and long-term structural performance monitoring, 

including critical structures like dams and nuclear facilities. Javadi and colleagues (Javadi 2003; Javadi 

et al. 2009) confirmed the usefulness of ANNs for simple tasks with linear-elastic, non-linear-elastic, 

and elastic-plastic stress-strain relations. It is important to note that the prediction accuracy depends not 

only on the quantity and the quality of training data but also on the network architecture (Bagińska and 

Srokosz 2019). 

Recent studies concerning ANNs techniques in geotechnical engineering include cohesion of 

sandy soils reinforced with fibers (175), identifying the dispersibility of soils (182), hydraulic 

conductivity in soils (183), forecast the bearing capacity of driven piles in cohesionless soil (185) or 

predicting the shear strength of soil reinforced with fibers (191). 

Also, in recent years AI techniques have expanded beyond ANNs to include Machine Learning 

(ML), Deep Learning (DL), and Ensemble Learning (EL). These techniques have shown significant 

promise in geotechnical engineering due to their ability to model intricate and nonlinear processes 

without presuming initial input-output relationships (Baghbani et al., 2022; Beiranvand and Rajaee, 

2022). ML techniques are particularly valued for their high interpretability and optimal performance 

with small data sets, making them suitable for tasks such as soil classification, spatial property variability 

prediction, and slope stability assessment (Assadi-Langroudi et al., 2022). 

Deep Learning (DL), a subset of ML, enhances learning algorithms' capability to comprehend 

complex data using neural networks with multiple layers of interconnected nodes. DL techniques are 

effective in handling large volumes of data and identifying complex patterns, making them suitable for 

geological feature detection, landslide prediction, seismic data analysis, and infrastructure monitoring 

(Lee et al., 2003). 

Ensemble Learning (EL) techniques, which combine multiple ML models to improve predictive 

accuracy, have been shown to outperform individual models in many geotechnical applications. EL 

methods are used for forecasting soil liquefaction susceptibility, categorizing rock mass quality, 

estimating lateral wall deflection in braced excavations, and predicting soil properties from raw soil 

spectra data (Samui, 2020). 

Modeling soil behavior under cyclic loading, characterized by stress-strain hysteresis and 

changing soil parameters, is a challenging task, even when using AI methods. Thus in this study we  

propose a novel approach to predict soil stress-strain curves resulting from multiple loading cycles based 

solely on soil properties and loading parameters. 
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It is important to emphasize that traditional methods for approximating soil behavior, such as the 

generalized hyperbolic equation (Kondner 1963; Kondner and Zelasko 1963) and its modifications 

(Duncan and Chang 1970; Hardin and Drnevich 1972; Nogami et al. 2012; Puzrin 2012), and the 

logarithmic function (Puzrin and Burland 1996), do not account for the evolution of hysteresis loops 

with subsequent loading cycles.  

Therefore we combine mathematical modeling, regression analysis, and Deep Neural Networks 

(DNNs) to forecast the evolution of hysteresis stress-strain response of different soil types under 

repeated loading-unloading cycles, offering a tool for geotechnical engineering applications. In more 

detail, we propose a hysteresis loop evolution equation and design a family of DNNs to obtain 

parameters of the equation. Our assumption was that this model would be able to effectively predict soil 

mechanical response with minimal data and simulate the phenomenon accurately. The results confirmed 

our assumptions, demonstrating the model's capability to describe effectively the evolution of the 

hysteresis loop given only soil and loading parameters. 

To develop and validate the model, a series of laboratory experiments using Torsional Shear (TS) 

tests were conducted. Fifteen series were used for model development and four for testing. The choice 

of the equation's complexity was crucial; an overly complex equation could hinder regression and 

training algorithms, while an overly simple equation could result in significant errors. 

2. TORSIONAL SHEAR (TS) DEVICE 

The TS apparatus is a precision measuring device designed to perform both resonant column and 

torsional shear tests. It has been applied in geotechnical engineering across the world since the 1960s. 

The TS device used in this study is the WF8500 model manufactured by Wykeham Farrance. The 

WF8500 is a dual function device. It enables soil sample testing with low frequency torsion oscillation 

(the TS mode) and resonant frequency detection (the resonant column mode, RC mode). In most cases, 

the device is used to determine the elasticity parameters related to soil stiffness (such as the deformation 

modulus G and damping ratio D). The device operates in the frequency range of 0.01-300 Hz and in the 

range of angular amplitudes from 0.01-30 mRad. This allows for the generation of small and very small 

shear deformations. The main control parameters of the TS test are frequency, amplitude and number of 

load cycles. The initial stress state, saturation and isotropic consolidation processes are controlled by 

the confining pressure, which is applied by means of compressed air, through  the water jacket (Fig. 1). 

The device is powered and controlled by an external driver connected to the computer. The driver is 

operated using specialized DYNATOR software. The software enables: 

• performing multiple TS tests on the same soil sample, 

• fully automated results processing, 

• smooth adjustment of the deformation level and the confining pressure adjustments. 

 

In the TS mode, the device cyclically loads the sample with a harmonically changing torque T and 

measures the shear angle Θ. The torque is generated by an electromagnetic actuator, and the angle is 

measured by a pair of inductive proximity sensors (Fig. 1). The load is applied to the free upper end of 

the sample, the lower end is fixed (attached to the base of the chamber of the device, Fig. 2). The 

boundary conditions reflect the Kelvin-Voigt SDOF model. 

The shear stress τ is given by the formula 

𝜏 = 𝜅
𝑇𝑅

𝐽
 (2.1) 

where R - sample radius, J - geometrical moment of inertia, κ - averaging factor (0.6-0.8).  
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Shear strain is calculated using the following formula 

𝛾 =
Θ𝑟

𝐻
 (2.2) 

where H is the sample height and r=κR. The hysteresis loop τ(γ) is a typical TS test result. 

 
Fig. 1. Schematic drawing of the Torsional Shear device 
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Fig. 2. Idealized model of a soil specimen under Torsional Shear test 

3. DESCRIPTION OF THE MODEL 

The main objective of this study was to propose and evaluate an effective way to model stress-strain (τ-

γ) response of soil due to repeated loading-unloading cycles. Therefore the model should transform 

discrete set of data (soil parameters; pore and cell pressure; amplitude and frequency of applied cyclic 

loading, see Tab. 2 for complete set of parameters) into continuous subset of ℝ2(hysteresis loops). 

{

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, ℎ𝑒𝑖𝑔ℎ𝑡,
𝑤𝑒𝑖𝑔ℎ𝑡, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦,

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝑐𝑒𝑙𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒,
𝑝𝑜𝑟𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑎𝑥𝑖𝑎𝑙 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

} ↦ {
𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 

ℎ𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 ⊂ ℝ2} (3.1) 

This is done in the following steps 

• Develop a hysteresis loop evolution model. 

• Transform experimental data into model parameters. 

• Use neural networks to predict model parameters. 

• Compare results obtained in the two previous steps (test the accuracy of the prediction). 

3.1. Model of a hysteresis loop evolution 

One of the simplest hysteresis loop models is given by the following set of equations (see for example 

Lapshin 1995) 

𝛾1(𝑡) = 4𝑃𝑐𝑜𝑠𝑚(𝑡) + 𝑄𝑠𝑖𝑛𝑛(𝑡), (3.2) 

𝜏(𝑡) = 𝑅𝑠𝑖𝑛(𝑡) (3.3) 

where P, Q, R ∈ ℝ are constants. Note that to obtain the "classical" hysteresis loop one can put n=m=3 

(see Fig. 3). In our case Eq. 3.2 may be written in the form 

𝛾1(𝑡) = 𝑝(3 cos(𝑎𝑡 + 𝑏) + cos(3𝑎𝑡 + 3𝑏)) + 𝑞(3 sin(𝑎𝑡 + 𝑏) − sin(3𝑎𝑡 + 3𝑏)) (3.4) 
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The above function is 
2𝜋

𝑎
-periodic and thus cannot produce a loop with geometry changing in time. 

Therefore we propose the following modification 

𝛾(𝑡) ∶= 𝑓(𝑡)𝛾2(𝑡), (3.5) 

𝛾2(𝑡) = 𝑞𝑐𝑜𝑠(3𝑎𝑡 + 3𝑏) + 𝑤𝑐𝑜𝑠(𝑎𝑡 + 𝑏) + 𝑝𝑠𝑖𝑛(𝑎𝑡 + 𝑏) + 𝑘𝑠𝑖𝑛(3𝑎𝑡 + 3𝑏) (3.6) 

where f(t) is a scaling function corresponding to evolution of the hysteresis loop. In our study we take 

𝑓(𝑡) = 𝐴 +
𝐵

𝑥 + 𝐶
 (3.7) 

where A, B are constants depending on the sample and C is set to be equal 500 for all samples (this 

value of C gives the best results). The parameters a, b, p, q, k, w are model constants. These 

parameters are analogous to the weights in a neural network, and their values are determined through  

a process similar to neural network training. 

Therefore to model a stress response of a given soil sample one should find the parameters a, b, p, q, k, 

w, A, B ∈ ℝ.  This can be done using regression analysis. 

In our study we use Levenberg-Marquardt algorithm to find the required set of parameters 𝛽̂ : 

{a, b, p, q, k, w, A, B} (see for example Pujol 2007) describing experimental data. That is, 𝛽̂ is such 

set of parameters of γ so that γ optimally describes the experimental data. Therefore the set 𝛽̂ should 

minimize the following function 

𝑆: ℝ8 → ℝ, 𝑆(𝛽) ∶= ∑(𝑦𝑖(𝑡𝑖) − 𝛾(𝑡𝑖 , 𝛽))2

𝑚

𝑖=1

 (3.8) 

where 𝑦𝑖(𝑡𝑖) is the set of experimental points (obtained using TS device). 

The Levenberg-Marquardt algorithm is an iterative procedure. In each step β is replaced by a vector 

𝛽 + 𝛿. As δ is small (in a small neighbourhood of 0∈ℝ8 thus 

  𝛾(𝑡𝑖 , 𝛽 + 𝛿) ≈ 𝛾(𝑡𝑖 , 𝛽) + 𝐽𝑖𝛿 (3.9) 

where 𝐽𝑖 = ∇𝑓(𝛽) is the gradient. Thus in the matrix notation we have 

  𝑆(𝛽 + 𝛿) ≈ ‖𝐲 − Γ(𝛽) − 𝐉𝛿‖2 (3.10) 

where ||.|| denotes the standard Euclidean norm. Also y, Γ (β) and J are m×8 matrices with i-th row 

equal to yi, γ(xi, β) and Ji, respectively. To find a local minimum we can differentiate S w.r.t. δ and set 

the result to zero. This yields the following condition 

  (𝐉𝑇𝐉)𝛿 = 𝐉𝑇(𝐲 − 𝐟(𝛽)) (3.11) 

In the Levenberg-Marquardt algorithm one modifies the above equation by adding the so-called 

damping factor λ 

  (𝐉𝑇𝐉 + 𝜆𝕀)𝛿 = 𝐉𝑇(𝐲 − 𝐟(𝛽)) (3.12) 

where 𝕀 ∈ M8×8(ℝ) is the identity matrix.  

As one can see this algorithm detects local minima and thus finds only local optimums. In our 

study the parameters obtained by the algorithm with random β are useless (see Fig. 5 for an example). 

Therefore it is crucial to feed the algorithm with adequate starting set of parameters β.  Therefore we 

use the following procedure 
1. Find parameters A', B' of f(t). Take the experimental data (γe(ti)) and find points (tk, γe(tk)), 1 ≤ k ≤ n which 
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correspond to the extremes. Use Levenberg-Marquardt algorithm to find A', B' corresponding to points 

{(tik, |γe(tk)|)} (see Fig. 4). 

2. Find parameters a', b' by fitting a curve 
1

𝑓(𝑡)
sin(𝑎′𝑡 + 𝑏′) $ to the experimental data. 

3. Put obtained parameters A', B', a', b' into γ(t) and find p', q', k', w' again, using Levenberg-Marquardt 

algorithm. 

4. Use Levenberg-Marquardt algorithm with starting set β={a', b', p', q', k', w', A', B'}. 

 

An example obtained using our procedure is given in Fig. 6. The algorithm was implemented in 

MATLAB.  

Thus the modelling process can be reduced to predicting the parameters of γ 

{

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, ℎ𝑒𝑖𝑔ℎ𝑡,
𝑤𝑒𝑖𝑔ℎ𝑡, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦,

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝑐𝑒𝑙𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒,
𝑝𝑜𝑟𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑎𝑥𝑖𝑎𝑙 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

} ↦ {
𝑎, 𝑏, 𝑝, 𝑞, 𝑘, 𝑤,

𝐴, 𝐵
} (3.13) 

 

 
Fig. 3. Classical hysteresis loop 

 
Fig. 4. A schematic graphs: a) experimental data 𝜸𝒆(𝒕), b) points 𝒕𝒌,𝜸𝒆(𝒕𝒌) corresponding to the extremes  

of the experimental data 
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Fig. 5. A fitted curve with the curve parameters obtained by the algorithm with random 𝜷 

 
Fig. 6. An example of fit obtained using the procedure proposed in this study 

3.2. Deep neural networks 

To predict the parameters of γ based on soil parameters, pore and cell pressure, amplitude and frequency 

of applied cyclic loading we use Deep Neural Networks (DNNs).  

A DNN is an artificial neural network (ANN), that is a computing system consisting of 

interconnected processing units (neurons) arranged into specialized layers (input layer, hidden layers, 

output layer). It can be trained to approximate multivariable functions. In the training process an ANN 

generates a model for input-output relations by analysing training data samples and adjusting connection 

weights according to a gradient of an error function. Properly trained ANN can make accurate output 

predictions for non-training input data. The training effectiveness is highly correlated with the quantity 

and quality of training data, the network architecture and the training parameters. 

To obtain the output vector each coordinate of the input vector is multiplied by a corresponding 

weight and added up together. The weighted sum is then used to calculate the value of an activation 

function. The activation function is a real function that determine the value returned by neurons in the 

output layer (e.g. logistic  function,  hyperbolic  functions (tanh), inverse trigonometric functions 

(arctan), softsign). 

The ANN architecture can be one of two general types, feedforward (the data is processed one 

time by the same neuron) or recurrent (connection loops can be formed). 

The most common feedforward type of network is a multilayer perceptron (MLP). An MLP has 

three layers at least (1 input, 1 hidden, 1 output). An MLP network with more than two hidden layers is 

called the deep neural network. 

Due to additional connections complex relations can be modelled more precisely using fewer 

neurons (Baral et al., 2018). Therefore in this study the model was developed using deep learning. 
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The DNNs used in this study are prepared using MATLAB environment. The architecture of the 

networks is given in Fig. 7. As the training set is relatively small (15 samples) the architecture and 

parameters of the DNNs were chosen based on the research conducted by the authors of this paper 

(Bagińska and Srokosz 2019). In more detail we use 
 Bayesian regularization as a training algorithm, 

 log-sigmoid activation function 

 

  logsig(𝑛) =
1

(1+exp(−𝑛))
, (3.14) 

 maximum number of training epochs 200, 

 maximum number of consecutive fails (increases in error) during the training process 5.  

For the prediction of each parameter a, b, p, q, k, w, A, B 200 DNNs were trained and the one with best 

training performance was used in the experiment. 

 

Fig. 7. A single DNN architecture 

4. RESULTS 

The experimental data used for the model development and evaluation were obtained with torsional 

shearing tests of different soils. The parameters of the soils tested in the TS device are given in Tab. 1. 

  

Table 1. Parameters of tested soils 

Soil Specific 

gravity 

Nominal 

particle size 

d50 [mm] 

Uniformity 

coefficient CU 

[-] 

Void 

ratio e [-] 

Volumetric 

density ρ 

[kg/m3] 

Compaction/consistency 

index Cc/CI [-] 

Sandy silt 

(saSi) 

2.66 0.047 17.1 0.67 1870 0.11 

Medium 

sand (MSa) 

1 

2.65 0.33 2.6 0.42 1860 0.97 

Medium 

sand 2 

2.65 0.33 4.0 0.37 1930 0.94 

Table 2. Specimen and TS test parameters 

Specimen 

label 
Soil 

Diameter 

[mm] 

Height 

[mm] 

Weight 

[mm] 

Frequency 

[Hz] 

Amplitude 

[V] 

Cell pressure 

[kPa] 

Pore pressure 

(avg.) [kPa] 

Axial 

[mm] 

R19 saSi 68.9 144.3 1212.68 0.05 9 50 -3.33 8.7 

R16 saSi 68.9 144.8 1213.14 0.05 2 50 -4.34 8.7 

R18 saSi 69.0 144.2 1213.03 0.05 7 50 -3.93 8.7 

R24 saSi 68.9 144.8 1213.42 0.05 8 50 -3.84 8.7 

R27 saSi 69.0 144.4 1213.17 0.05 1 50 -4.38 8.7 

R29 saSi 69.0 144.3 1212.97 0.05 10 50 -3.22 8.7 

R36 saSi 68.9 144.5 1212.88 0.05 3 50 -4.24 8.7 

R37 saSi 69.0 144.2 1213.24 0.05 0.5 50 -5.03 8.7 
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The parameters of each soil specimen and the test parameters are presented in Tab. 2. The TS tests 

were carried out with low frequency of changing torque (0.01-0.05 Hz).  

4.1. Training samples 

For the DNNs' training 15 out of 19 samples were used (9 samples of saSi, 3 of MSa 1 and 3 of MSa 

2). 

 

The parameters of the function fitted to the raw experimental results (γ(t)) are given in Tab. 3. Tab. 

4 presents goodness of that fit measured by R2.  

where yi are the experimental dataset values, 𝑦𝑖̂ are the fitted values and 

 

  𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  (4.2) 

R40 saSi 68.9 144.6 1213.47 0.05 4 50 -4.19 8.7 

R43 saSi 68.9 144.6 1213.45 0.05 6 50 -3.99 8.7 

R50 saSi 68.9 144.7 1213.29 0.05 5 50 -4.16 8.7 

G35 MSa 2 72.8 143.1 1093.00 0.01 5 49.7 1.29 5.53 

G13 MSa 2 72.8 143.0 1093.10 0.01 7 49.7 1.33 5.53 

G10 MSa 2 72.7 143.1 1092.77 0.01 10 49.9 1.34 5.53 

G33 MSa 2 72.7 143.0 1092.80 0.01 10 103.5 1.31 5.53 

B19 MSa 1 70.0 143.1 1029.00 0.01 9 27.9 0.60 5.86 

B16 MSa 1 70.0 143.2 1029.00 0.01 9.7 27.7 -0.64 5.78 

B26 MSa 1 70.0 143.3 1029.60 0.01 9.5 351.8 -0.52 5.72 

B57 MSa 1 70.0 143.3 1029.30 0.01 9.2 400.0 -0.60 5.77 

  𝑅2 = 1 −
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

, (4.1) 

Table 3. Model parameters obtained with regression 

Specimen 

label 
A B b1 c1 k p q w 

R16 0.471 -29.29 0.314 3.032 0.000 1.000 -0.003 0.002 

R24 3.525 -327.4 0.314 2.962 0.023 1.023 -0.009 0.001 

R36 0.957 -135.2 0.314 3.010 0.003 1.002 -0.004 -0.001 

R43 2.689 -418.7 0.314 2.966 0.015 1.014 -0.008 0.002 

R37 0.090 0 0.314 3.067 -0.003 1.005 0.001 -0.002 

R50 2.043 -309.1 0.314 2.979 0.012 1.008 -0.007 0.002 

R27 0.205 -9.049 0.314 3.059 -0.002 0.984 -0.002 -0.001 

R29 3.930 -148.7 0.314 2.968 0.043 1.054 -0.009 0.000 

R40 1.464 -218.3 0.314 2.993 0.007 1.007 -0.006 -0.001 

G10 -0.304 1928.0 0.064 2.520 0.034 1.022 -0.051 -0.015 

G35 -0.026 648.2 0.064 2.575 0.004 0.996 -0.037 -0.013 

G33 -0.489 1217.0 0.064 2.576 0.033 1.016 -0.029 -0.018 

B19 1.061 542.7 0.314 2.812 0.006 1.003 -0.025 -0.005 

B16 1.537 167.5 0.314 2.911 0.023 1.034 -0.023 -0.002 

B57 0.366 -9.824 0.314 3.063 0.002 1.007 -0.003 0.001 
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 Table 4. Model parameters predicted by the DNNs 

Table 5. Goodness of fit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Goodness of fit of the DNN model 

 

 

 

 

4.2.Test samples 

For the DNNs' testing 4 of 19 data samples were used (2 of saSi, 1 of MSa 1 and 1 of MSa 2). 

Model parameters predicted by the DNN unit are given in Tab. 5 and the goodness of fit of the obtained 

function to the experimental data is presented in Tab. 6. Figures 8-11 present the results obtained with 

the proposed model, i.e. the stress-strain curves and the evolution of the hysteresis loops through three 

loading-unloading cycles. 

 

Specimen 

label 
A B b1 c1 k p q w 

R19 3.823 -308.8 0.314 2.955 0.035 1.043 -0.009 0.0002 

R18 2.395 -29.53 0.315 2.962 0.024 1.033 -0.008 -0.0004 

G13 -0.154 1110.0 0.064 2.938 0.013 1.001 -0.043 -0.015 

B26 0.578 -92.23 0.062 3.066 0.009 1.015 -0.004 0.002 

Specimen label R2 

R16 0.9997 

R24 0.9995 

R27 0.9989 

R29 0.9995 

R36 0.9998 

R37 0.9941 

R40 0.9998 

R43 0.9998 

R50 0.9999 

G10 0.9928 

G33 0.9748 

G35 0.9781 

B16 0.9995 

B19 0.9974 

B57 0.9997 

Specimen label R2 

R16 0.9992 

R18 0.9988 

G13 0.9885 

B26 0.9286 
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Fig. 8. Results for specimen G13 (MSa 2). Experiment (on the right) vs. model (left) 

  

Fig. 9. Results for specimen R18 (saSi). Experiment (on the right) vs. model (left) 

  

Fig. 10. Results for specimen R19 (saSi). Experiment (on the right) vs. model (left) 
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Fig. 12. Proposed procedure flowchart 

  
Fig. 11. Results for specimen B26 (MSa 1). Experiment (on the right) vs. model (left) 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The following main conclusions can be drawn from this study: 
1. Model accuracy: The results obtained with the proposed model show good compliance with 

the experimental data with R2 values ranging from 0.9286 to 0.9992. This high level of accuracy 

is noteworthy, especially considering that:  

 the prediction was made solely from the knowledge of the soil properties and the 

loading parameters, 

 the training dataset was relatively small. 

2. Support for modeling methods: While ANN models may not always be used as independent 

tools for modeling and predicting complex material behavior, they can effectively support other 

modeling methods. Neural network-based approaches can be integrated into analytical models, 

aiding their development and potentially simplifying their application in engineering practice. 

3. Efficiency and practicality: By combining DNNs with mathematical modeling, the study 

demonstrates that an efficient model can be created, capable of accurately modeling the 

phenomenon and predicting results with minimal data. This hybrid approach is particularly 

useful in practical applications where experimental data may be limited. 

4. Experimental validation: The validation through laboratory experiments using Torsional 

Shear (TS) tests confirmed the model's reliability in simulating the mechanical response of 

various soil types under repeated loading-unloading cycles. 

Recommendations 

1. Implementation in engineering practice: The developed hybrid model might be considered 

for implementation in geotechnical engineering projects where accurate soil behavior 

predictions are critical. This includes applications such as foundation design, slope stability 

analysis, and risk assessment of critical structures. 

2. Further research: Future studies could explore the application of this hybrid modeling 

approach to a broader range of soil types and loading conditions to validate and refine the model 

further. Additionally, investigating the integration of other AI techniques such as Ensemble 

Learning could enhance the model's predictive capabilities.  
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