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A b s t r a c t  

The paper presents a formulation and verification of a 2D soil – structure interaction model which enables the 

analysis of reinforced concrete shallow foundations under monotonic short-time loads. The structure supported by 

a deformable subsoil, whose elasto-plastic features are being considered. The structure model describes: the ability 

of crack creation, non-linear stress – strain characteristics of concrete and reinforcement and also reinforcement – 

concrete interaction. The foundation – subsoil contact model enables the identification of slide and adhesion zones.  

The presented mathematical formulation allowed for the development of a set of finite elements simulating the 

behaviour of the foundation, the subsoil and the contact zone between them. The elasto-plastic approach was used 

to describe the behaviour of the structure, the subsoil and the contact phenomena. Computer programs were 

prepared and verifying analyses were presented. 

Keywords: Soil – structure interaction, reinforced concrete, FEM, contact element 

1. INTRODUCTION 

The building foundation supported by z deformable subsoil creates a problem of the soil – structure 

interaction (SSI). The problem is characterized by considerable differences in the values of mechanical 

parameters of the subsystems being in contact. Stiffness and strength of reinforced concrete foundations 

and subsoil differ even by several orders of magnitude, see e.g. Look [1]. The ability of concrete 

cracking, its non-linear stress – strain characteristics and the interaction with steel reinforcement are 

also a challenge. Additionally, there is a possibility of sliding and separation along the foundation – 

subsoil contact surface. 

Depending on the subject of interest, there are two extremely different attitudes to soil – structure 

interaction presented in the literature. In the first attitude, typical for structural engineering, complex 

models of structures (taking into account e.g. stiffness degradation in a deformation process) and 

simplified soil models (e.g. the one-parameter Winkler’s analogue) are assumed. In the other attitude, 

which is characteristic for geotechnical engineering, the contrary situation takes place. Complex soil 

                                                      
1 Corresponding author: University of Zielona Góra, Institute of Civil Engineering, 65-516 Zielona Góra, Poland, e-mail: 

W.Szajna@ib.uz.zgora.pl     

mailto:W.Szajna@ib.uz.zgora.pl


A SET OF FINITE ELEMENTS FOR 2D ANALYSIS OF REINFORCED CONCRETE FOUNDATIONS  

ON DEFORMABLE SUBSOIL 

101 

 
 

constitutive models (including consolidation, water drainage etc.) and simplified structure models (e.g. 

treated as punches) are used. The reason of this situation is the fact that structural mechanics, soil 

mechanics and additionally, contact mechanics are three separate wide areas of research, but related to 

soil – structure interaction. In this paper it is assumed that the models of the reinforced concrete structure, 

the subsoil and the contact area would remain at the similar order of complexity.  

The behaviour of reinforced concrete and soil is often described in terms of elasto-plasticity, see e.g. 

Hofsetter and Mang [2], Tejchman and Bobiński [3], Chen and Mizuno [4], Yu [5], Puzrin [6]. A 

comprehensive review of approaches to numerical modelling of reinforced concrete can be found in [7]. 

Despite the considerable differences in internal structure of materials such as steel, concrete or soil, their 

macroscopic behaviours display similarity. They all exhibit elasticity, plasticity, brittleness, hardening, 

etc. although at different levels of intensity. There is also an analogy between contact friction and perfect 

plasticity (see Michałowski and Mróz [8]). So, the use of the elasto-plastic attitude to modelling the 

reinforced concrete structure, the subsoil and the contact area is justified in this study. 

In modelling soil-structure interaction, much more attention is paid to constitutive models of the soil, 

than to contact conditions. However, the load transfer from the superstructure to the ground takes place 

via the contact surface and proper modelling of the contact conditions may affect significantly the 

analysis results. This is particularly true with cases where large concentrated loads are applied or where 

significant displacements tangential to the contact surface occur. The importance of the method of 

modelling of contact conditions and their impact on the results of numerical solutions to typical 

engineering problems have been presented in many works, see e.g. Potts and Zdravković [9], Sheng et 

al. [10] or Dhadse et al. [11].  

Historically, modelling of SSI using the finite element method (FEM) was developed with the use of 

zero thickness contact elements introduced by Goodman et al. [12] and thin layer elements proposed by 

Desai, et al. [13]. Their comparison is included in Qian et al. [14] among others. Both concepts are still 

being developed. Modified formulations of zero thickness elements were presented by Dhase et al. [11]. 

The comparison of zero thickness and continuum elements implemented in Plaxis was analysed by 

Damians et al. [15] who delivered element parameters that give the same numerical outcomes. A new 

thin-layer interface element formulation was proposed by Dalili et al. [16] and the element was used to 

conduct soil – framed structure interaction analysis. 

A comprehensive review of the possible formulations of contact modelling was provided by: Li et al. 

[17], Dhadse et al. [18] and Belhadj et al. [19]. 

In laboratory tests of contact zones, macrostructural and microstructural approaches are distinguished. 

Macroscale research was conducted by Chen et al. [20] among others. They analysed surface roughness 

and its effect on interfacial shear behaviour of clay – concrete interface.  

Microscale tests exploiting the image analysis of soil – structure interface were carried out by Zhang et 

al. [21]. Zhang and Zhang [22] proposed to treat the contact zone as a kind of composite, including the 

lower surface of the building's foundation and the layer of adjacent soil. The mechanical behaviour of 

this zone differs from that of the soil itself due to the constraints introduced by the presence of the 

structure. In the contact layer, the displacement and deformation fields are non-uniform. 

Hu and Pu [23] were testing and modelling the influence of the interface surface roughness on the sand 

– steel contact zone. Elastic perfect-plastic failure occurs along the smooth interface, while strain 

localization, strain-softening and dilatancy occur on a rough interface. A damage constitutive model 

with ten parameters for interface was proposed. 

The localized nature of the load transfer mechanism from the structure to the subsoil has limited the 

reliability of geotechnical predictions and design. The problem was analysed by DeJong et al. [24] using 

particle image velocimetry technique. 



102 Waldemar SZAJNA 

 
 

New techniques for numerical analyses have been introduced in the investigation of the soil – structure 

contact zone recently. For the soil domain involving large displacements, discrete element method was 

successfully used by Dang and Meguid [25]. For large displacement and large strain problems, the 

particle finite element method was used, see Carbonell et al. [26]. 

When analysing structural elements in building structures, it is convenient to use generalized stresses 

(bending moments, transverse forces) and generalized displacements (rotation angles and translation of 

the middle surfaces of plates and shells) to describe their behaviour. For this reason, the interface 

elements are intended not only to model the foundation – soil contact, but also to provide a connection 

between finite elements with different degrees of freedom (rotational and transitional in the foundation 

raft and only transitional in the soil). 

The aim of the current work is the elaboration of a simple numerical model which would allow 

investigating the interaction between engineer structures and subsoil, described by a small number of 

standard parameters. The statics of a soil – shallow foundation structure system, subjected to monotonic 

short-time loads in a plane state of strains is considered. It is assumed that the reinforced concrete 

structure is supported by a deformable subsoil with an arbitrary system of geological layers. In practical 

engineering applications, it is important for the model to be described by a limited number of material 

parameters, values of which can be obtained in standard tests. 

2. PROBLEM DEFINITION 

General assumptions: 

1. A continual description of materials with neglecting their internal structure has been used. 

2. All the non-continuities in the system (concrete cracks, foundation slip on the surface of subsoil) 

are modelled by constitutive equations. 

3. A homogeneous elasto-plastic description characterises the irreversible strains appearing in the 

reinforced concrete structure, in the subsoil and in the foundation – subsoil contact surface. 

4. FEM spatial discretisation has been applied.  

Fig. 1 presents a part of a hypothetical long foundation structure which is situated on a subsoil with a 

certain system of geological layers. A part of the ground lying in the neighbourhood of the foundation 

has been separated from the semi-infinite subsoil (dashed line in Fig. 1). The separated part, which has 

been discretised into  finite elements (right side of Fig. 1), should be big enough to prevent boundary 

conditions from disturbing the view of the phenomena which take place in the neighbourhood of the 

foundation. 

 

Fig. 1. A section and the FEM spatial discretisation 
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The foundation raft has been also discretised. An additional layer of finite elements, known as interface 

elements, has been introduced between the structure and the subsoil finite elements. The function of the 

layer is to model the phenomena taking place on the contact surface. 

3. A VIRTUAL WORK EQUATION OF THE BODIES BEING IN CONTACT 

The equation of the virtual work (Koiter [27]) of the bodies being in contact of a total volume V, lateral 

surface S and contact surface Sc takes the form  

∫𝛿𝜺𝑇

𝑉

𝝈 𝑑𝑉 + ∫ 𝛿𝛥𝒖𝑇𝒕𝑐𝑑𝑆𝑐
𝑆𝑐

= ∫𝛿𝒖𝑇𝒃𝑑𝑉
𝑉

+ ∫𝛿𝒖𝑇𝒑𝑑𝑆
𝑆

 (3.1) 

where: 

𝛿𝒖, 𝛿𝛥𝒖, 𝛿𝜺 – vector of  virtual displacements, vector of relative virtual displacements, tensor of virtual 

strains respectively, 

𝝈, 𝒃, 𝒑 – tensor of stresses, vector of body forces and vector of surface forces respectively, 

𝒕𝑐 – vector of mutual reactions on the contact surface Sc. 

The first component of the left side of equation (3.1) will be used to derive the stiffness matrixes of the 

structure element and the subsoil element, whereas the second term to derive the stiffness matrix of the 

interface element. 

Hypothetical two bodies a and b, subjected to surface and body forces, in contact in the Sc zone, are 

shown in Figure 2. 

 

Fig. 2. Contact of bodies a and b  

4. FINITE PLATE STRIP  

A plate strip subjected to compression and bending to a cylindrical surface is considered. While bending, 

the change of the curvature (
𝑑𝑤

𝑑𝑥
) as well as strains () caused by the shear forces  are taken into account, 

according to Mindlin’s hypothesis, Owen and Figueiras, [28] – Fig. 3.  

So, it is assumed that a section which is flat before deformation remains flat after it, but the section is 

not normal to the midsurface. 
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Fig. 3. A positive sign convention and kinematic hypothesis of the Mindlin’s plate 

The components u and w of displacements of points of the plate strip, expressed by the displacements 

of the midsurface (�̄�, �̄�, �̄�), equal 

𝑢(𝑥) = �̅�(𝑥) − 𝑧 �̅�(𝑥), (4.1) 

𝑤(𝑥, 𝑧) = �̅�(𝑥), (4.2) 

where 

�̅�(𝑥) =
𝑑𝑤

𝑑𝑥
− 𝛽. (4.3) 

The Hook’s constitutive equations as well as the Cauchy’s equations of the plate strip bent to a 

cylindrical surface take the form 

[
𝜎𝑥

𝜏𝑥𝑧
] =

[
 
 
 

𝐸

1 − 𝜈2
0

0
𝐸

2(1 + 𝜈)]
 
 
 
[
𝜀𝑥

𝛾𝑥𝑧
] = [

𝐷1 0
0 𝐷2

] [
𝜀𝑥

𝛾𝑥𝑧
]. (4.4) 

[
𝜀𝑥

𝛾𝑥𝑧
] = [

𝜕

𝜕𝑥
0

𝜕

𝜕𝑧

𝜕

𝜕𝑥

] [
𝑢
𝑤

]. (4.5) 

Expressing the displacements through the nodal parameters of the element we receive 

[
𝑢(𝑥, 𝑧)
𝑤(𝑥, 𝑧)

] = ∑[
𝑁𝑖 0 −𝑧𝑁𝑖

0 𝑁𝑖 0
]

𝑛

𝑖=1

[

𝑢𝑖

𝑤𝑖

𝛼𝑖

], (4.6) 

where Ni are the assumed shape functions.  

Using equations (4.4)-(4.6) as well as the first member of equation (3.1), we receive a relation describing 

a block of stiffness matrix of the strip. 
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𝑲𝑖𝑗 = ∫ ∫ ∫ ([

𝑁𝑖,𝑥𝐷1𝑁𝑗,𝑥 0 −𝑁𝑖,𝑥𝑧𝐷1𝑁𝑗,𝑥

0 0 0
−𝑁𝑖,𝑥𝑧𝐷1𝑁𝑗,𝑥 0 𝑁𝑖,𝑥𝑧

2𝐷1𝑁𝑗,𝑥

]
ℎ/2

−ℎ/2

0.5

−0.5𝐿

+ [

0 0 0
0 𝑁𝑖,𝑥𝐷2𝑁𝑗,𝑥 −𝑁𝑖,𝑥𝐷2𝑁𝑗

0 −𝑁𝑖𝐷2𝑁𝑗,𝑥 𝑁𝑖𝐷2𝑁𝑗

])  𝑑𝑧 𝑑𝑦 𝑑𝑥. 

(4.7a) 

n= lw

h

z, w

x, u

n=1
 

Fig. 4. Strains and displacements in an element with a single layer of reinforcement 

Since  the element is heterogeneous across the thickness of the plate, the section has been divided into 

layers, and reinforcing bars have been smeared to appropriate layers of mechanically equivalent 

thickness – see Fig. 4. There are some reinforcement layers and some concrete matrix layers, the number 

and the layout of which are arbitrary.  

A layered slab model was used to account for the reinforcement. This is a standard approach used in 

modelling reinforced concrete flexural elements, see e.g. Owen and Figueiras, [28]. 

Performing the rectangular integration with respect to thickness coordinate (variable z) we receive the 

final form of the expression determining the block of stiffness matrix of the layer element of the finite 

strip. 

𝑲𝑖𝑗 = ∫  ∑

(

 
 

[
 
 
 
 

𝑁𝑖,𝑥𝐷1𝑁𝑗,𝑥 0 −𝑁𝑖,𝑥𝑧𝑛𝐷1𝑁𝑗,𝑥

0 0 0

−𝑁𝑖,𝑥𝑧𝑛𝐷1𝑁𝑗,𝑥 0 𝑁𝑖,𝑥 (𝑧𝑛
2 +

ℎ𝑛
2

12
)𝐷1𝑁𝑗,𝑥

]
 
 
 
 𝑙𝑤

𝑛=1𝐿

+ [

0 0 0
0 𝑁𝑖,𝑥𝐷2𝑁𝑗,𝑥 −𝑁𝑖,𝑥𝐷2𝑁𝑗

0 −𝑁𝑖𝐷2𝑁𝑗,𝑥 𝑁𝑖𝐷2𝑁𝑗

]

)

 
 
ℎ𝑛𝑑𝑥 

(4.7b) 

In equation (4.7b) summation runs over all the lw layers of the element. In each layer, parameters D1 and 

D2 correspond with the characteristics of the concrete or the steel, so we received an equation 

determining the stiffness matrix of the reinforced concrete element. 

5. CONSTITUTIVE MODEL OF REINFORCED CONCRETE STRUCTURE  

The mathematical model of the reinforced concrete structure consists of a model of concrete in a 

compressed zone, a concrete model in a tensioned zone, a model of reinforcement and a model of 

interaction between concrete and reinforcing bars. The layer concept is characterised by subdividing a 
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finite element across its thickness into several layers. For each of these layers appropriate constitutive 

relations, for concrete and reinforcement, are used.  

5.1.  Concrete model in the  compressed zone  

In the state of a uniaxial compression of the concrete, a simple hyperbolic relation between strain and 

stress has been assumed after Hofstetter and Mang [2]. It is expressed by the equation. 

𝜎 =
𝐸0𝜀

1 + (
𝐸0𝜀𝑐
𝑓𝑐

− 2)
𝜀
𝜀𝑐

+ (
𝜀
𝜀𝑐

)
2 

(5.1) 

where: fc – compressive strength of concrete, c –  strain corresponding with the compressive strength 

of concrete, E0 – initial Young modulus of concrete.  

In order to determine the value of the irreversible deformations it has been assumed that, the strain 

consists of an elastic part (reversible) and of a plastic one (irreversible) 

𝜀 = 𝜀𝑒 + 𝜀𝑝. (5.2) 

Substituting (5.2) into  (5.1) and solving the equation with respect to p, we receive relations presenting 

values of the irreversible strains, respectively for  c, (sign +) and  c (sign -) where: 








     

        

p

c

c c c c c c

c c c c c c c c c

E f
E f E f E f

E E f E f E f E f

   

    

1

2
2 2 2 2

4 2 4

0

0 0

2 2 2

0

2 2

0

4 4 2

0

3 3 2

0

4 4

0

3 3 2

0

4 4 2

 (5.3) 

5.2.  Concrete model in the tensioned zone 

The response of concrete under tensile stresses is assumed to be linear elastic until formation of a crack 

(= r) Fig. 5. The cracked material is treated as a continuum allowing damage to be spread or smeared 

over the region associated with a sampling node for numerical integration over the volume of a finite 

element. The phenomenon is described in terms of stress – strain relations.  

 

Fig. 5. Schematic representation of constitutive model of concrete 
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To overcome mesh sensitivity effect resulting from continuous treatment of geometrical discontinuity, 

fracture energy Gf is used as an additional material parameter Karihaloo [29]. The stiffness in the strain 

softening region is described by the equation 

E E
EG

l f
r

f

s r

 












1
2

2

1

 (5.4) 

where ls is the element size, equal the width of the crack band, fr is the tensile strength of concrete. 

5.3. Concrete – reinforcement interaction model 

The usage of smeared representation of concrete cracking, results in implicit modelling of concrete – 

reinforcement interface behaviour as well as aggregate interlock of cracked concrete by modifying the 

constitutive relations for concrete. 

Due to bond effects, cracked concrete carries a certain amount of tensile stress between cracks. The 

concrete adheres to the reinforcing bars and contributes to the overall stiffness of the structure. The 

effect is known as tension stiffening.  

The behaviour of cracked reinforced concrete loaded in tension can be considered as a superposition of 

stiffness of plain concrete and additional stiffness due to bonds between concrete and reinforcement, c.f. 

dot line, Fig. 5.  

Aggregate  interlock at cracks is modelled by a modified shear modulus G according to Fig. 6. 

 
Fig. 6. Modification of shear modulus of concrete in tensioned zone  

Tension stiffening and aggregate interlocking effects are assumed to vanish while initiating 

reinforcement yielding ( = y). 

5.4. Model of reinforcement 

The reinforcing bars are considered as steel layers of equivalent thickness. Each steel layer has an 

uniaxial behaviour resisting only the axial force in the bar direction. A bilinear idealisation is adopted 

in order to model the elaso-plastic stress – strain relationship. The steel initially deforms according to 

the elastic modulus Es, until the strain level reaches a uniaxial yield strain y. Linear strain-hardening 

response, characterised by the modulus EH, describes the material behaviour after further load. 

6. INTERFACE ELEMENT  

6.1. Element formulation 

The interface elements serve two aims in the considered problem: 

 connect finite elements of different nodal parameters (translational degrees of freedom of 

subsoil elements as well as translational and rotational degrees of freedom of the plate Fig. 7),  
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 model adhesion and slide zones on the foundation – subsoil contact area. 

It has been assumed that there is consistency between the displacements of the nodes of the interface 

element and the displacements of a given surface of the plate (upper nodes) and the displacements of 

the subsoil (lower nodes): 

𝑢𝑔(𝑥) = 𝑢𝑏(𝑥) +
ℎ

2
𝛼𝑏(𝑥) 

𝑤𝑔(𝑥) = 𝑤𝑏(𝑥) 

(6.1a) 

 

𝑢𝑑(𝑥) = 𝑢𝑠(𝑥) 

𝑤𝑑(𝑥) = 𝑤𝑠(𝑥) 
(6.1b) 

In case of linear elasticity between mutual reactions {tc} and displacements {u} on the contact area the 

following relation takes place 

[
𝜏
𝜎𝑛

] = [
𝑘𝑡 0
0 𝑘𝑛

] [
𝛥𝑢𝑡

𝛥𝑢𝑛
] (6.2) 

where ks and kn are the coefficients of elasticity respectively for tangential and normal directions. 

 

Fig. 7. The interface element connecting the plate and the subsoil elements 

Applying (6.1), the displacements of upper and lower nodes can be expressed by nodal parameters of 

the plate respectively 

𝒖𝑔 = [
𝑢𝑔(𝑥)

𝑤𝑔(𝑥)
] = ∑[

𝑁𝑖 0
ℎ

2
𝑁𝑖

0 𝑁𝑖 0
]

𝑛

𝑖=1

[

𝑢𝑖
𝑏

𝑤𝑖
𝑏

𝛼𝑖
𝑏

] (6.3) 

and nodal parameters of the subsoil element. 

𝒖𝑑 = [
𝑢𝑑(𝑥)

𝑤𝑑(𝑥)
] = ∑[

𝑁𝑖 0
0 𝑁𝑖

]

𝑛

𝑖=1

[
𝑢𝑖

𝑠

𝑤𝑖
𝑠] (6.4) 

Presenting the difference between the upper and the lower nodal displacements in the form 

𝛥𝒖 = 𝒖𝑔 − 𝒖𝑑 = 𝑵𝒖𝑏𝑠 (6.5) 
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and substituting (6.5) and (6.2) into the second component of the virtual work equation (3.1), we receive 

a relation defining a stiffness matrix of the interface element 

𝑲𝑘 = ∫ 𝑵𝑇𝑫𝑵𝑑𝑥
𝐿

0

 (6.6) 

In order to enable modelling the zones of adhesion and the slide zones, the elasticity matrix [D], defined 

by equation (6.2) will be replaced with a relevant elasto-plastic matrix. 

6.2.  An elasto-plastic contact model 

Within the area of the foundation and the subsoil we can distinguish a full adhesion zone of both bodies 

and a sliding zone. An isotropic Coulomb friction model has been used 

𝑓 = |𝜏| + 𝜎  𝑡𝑔 𝜙 − 𝑐, (6.7) 

where:  is an internal friction angle and c – cohesion, Fig. 8. 

Taking the advantage of the analogy between a friction phenomenon and the flow theory of plasticity, 

the problem of the nodes on the foundation – subsoil contact area has been reduced to a substitute elasto-

plastic problem. 

The vector of displacement differences between upper and lower contact area{u} given in equation 

(6.5) can be regarded as a measure of strains of the interface element. By analogy with a tensor of a total 

velocity of strains in the flow theory of plasticity, the vector {u} can be expressed as a sum of velocities 

of elastic strains and plastic slides velocities. 

𝛥�̇� = 𝛥�̇�𝑒 + 𝛥�̇�𝑝. (6.8) 

Equation (6.7) can be regarded as plasticity condition (the condition of sliding of the foundation on the 

subsoil surface). The elasto-plastic matrix of the interface element takes the general form 

𝑫𝑒𝑝 = 𝑫 −
𝑫

𝜕𝑔
𝜕𝝈

(
𝜕𝑓
𝜕𝝈

)
𝑇

𝑫

(
𝜕𝑓
𝜕𝝈

)
𝑇

𝑫 
𝜕𝑔
𝜕𝝈

, (6.9) 

where g is a scalar function of stresses, determining the plastic potential in the plastic flow rule. 

Considering the flow rule associated with plasticity condition, the elasto-plastic matrix is described by 

the equation 

𝑫𝑒𝑝 =
𝑘𝑠𝑘𝑛

𝑘𝑠 + 𝑘𝑛 𝑡𝑔2 𝜙
[
𝑡𝑔2 𝜙 −𝑡𝑔 𝜙
− 𝑡𝑔 𝜙 1

]. (6.10) 

 
Fig. 8. Coulomb’s friction condition 
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7. THE SUBSOIL FINITE ELEMENT  

The Serendipity element has been used to model the subsoil in the plane state of strains. The reduced 

integration scheme has been applied by Zienkiewicz and Taylor [30]. 

To reduce dilation  in the soil while plastic flow, a non-associated flow rule has been used. A plastic 

potential function connected with the Mohr-Coulomb’s plasticity condition has been used in an 

analogous form substituting the internal friction angle of the soil with a dilation angle. The elasto-plastic 

matrix of the subsoil element is defined by equation (6.9). 

8. SOLUTION STRATEGY OF A NON-LINEAR FEM PROBLEM  

8.1.  An incremental-iterative method of solving the non-linear task 

The following linearised system of equilibrium equations is solved in each incremental step t 

𝑲𝑇  𝛥𝒓 = 𝑭𝑡+𝛥𝑡
𝑒𝑥𝑡 − 𝑭𝑡 𝑖𝑛𝑡  (8.1) 

where KT is a tangential stiffness matrix of the whole system, Fext is an external nodal load vector, Fint 

is an internal force vector, r is a vector of increments of generalised node displacements. 

Due to the applied non-associated flow rule in subsoil elements, the modified Newton-Raphson’s 

method has been used (KT = K0, Fig. 9). 

For subsoil elements and contact elements an incremental formulation has been applied. On the basis of 

increments of generalised node displacements, derived from (8.1), strain increments have been 

calculated and next, using (6.9) or (6.10), stress increments have been obtained. 

F

K0

F
int

t

r

t+   t
F

ext

 

Fig. 9. A modified Newton-Raphson’s method for a system of one-degree of freedom 

A total formulation has been used for structure elements, where the total displacements and the total 

strains have been derived from displacement increments. Total stresses have been calculated on the basis 

of the total strains from the equation = D()   (e.g. for the layers of compressed concrete, see (5.1)). 

Using the elaborated mathematical model computer programmes have been prepared. The programs are 

prepared for the analysis of the soil – reinforced concrete structure interaction in a plain strains state. 

9. VERIFICATION OF THE MODEL  

In order to check the correctness of the computer programme solutions the results of three tests are 

presented. Since the literature does not describe any experimental or numerical tests taking into account 
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the structure stiffness degradation, the influence of subsoil and contact conditions, which would match 

the elaborated model, the author has decided to carry out separate tests for particular parts of the model. 

The numerical solutions are compared to the analytical solutions as well as the results of laboratory 

experiments. 

9.1. Test 1 – The Sadowsky’s problem 

Contact pressures under the punch intended into an elastic half-plane achieved in an analytical solution 

are compared with numerical results (Fig. 10). FEM solution achieved in a full integration of the stiffness 

matrix of the interface element shows oscillation of the contact pressures. This can be limited applying 

a reduced Newton-Cotes’s integration, leading to the stiffness matrix diagonalisation c.f. Hohberg [31]. 

9.2. Test 2 – The Monnier’s reinforced concrete beam 

In order to verify the elaborated reinforced concrete model, the numerical solutions have been compared 

with the experiment results by Monnier [32] (see Fig. 11). 

 

Fig. 10. Diagram of the contact pressures under the punch 

152 x 152 x 152 x 17,5 2 x 152 x 17,52 x 20

50 75

200 cm

75 7550

2
,4

200 cm

2

2
6
 c

m

2
,4

P 2

2F = 3,3 cm

2

F = 2,2 cm

1

P1



1P2 P







P1 P2

75

B)

A)

C)

 

Fig. 11. A) A  beam geometry, B) FE discretisation, C) reinforcement distribution 
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Each element has been divided into 11 layers in the vertical direction, which the second and the tenth 

ones are the reinforcement layers. The values of the deflection of the section  achieved in the 

measurements are compared to linear and non-linear FEM solutions (Fig. 12). 

It can be stated that there is a considerable consistency between the non-linear solution and the results 

of the Monnier’s test, which proves the correctness of the elaborated numerical model of the reinforced 

concrete. 

9.3. Test 3 – Verification of a non-linear contact model  

The numerical solution is compared to the experimental results by Zong-Ze et al. [33], in which 

deformations in the concrete – soil contact area have been investigated. In the experiment, a direct shear 

apparatus has been applied as well as a concrete plate 60 cm long, with viziers and measuring 

instruments installed inside it. A sample of the soil placed in the apparatus was moved along the surface.  

As the mean shear stresses  arise, caused by a horizontal force which moves the sample, successive 

points of the soil, starting from point No 6 situated near the edge, are displaced. Displacements of 6 

points of the soil as well as displacements of the edge of the shearing apparatus relatively to the concrete 

plate are presented in Fig. 13a. The results of numerical simulation of the experiments are presented on 

Fig. 13b. 

 

Fig. 12. A diagram of the load-deflection relation of a section  of a beam 

The comparison of the two figures reveals that the elaborated interaction model represents the 

behaviour of the apparatus well, but it is worse as far as the behaviour of the particular points of the 

contact area are concerned, especially in the centre of the soil sample. 

10. RECOMENDED SET OF FINITE ELEMENTS  

After a series of numerical tests (three of them are presented above), in which various finite elements 

and integration schemes have been applied, the following set of elements (Fig. 14) give satisfactory 

results: 

 3-node quadratic Lagrangian layered element. Selective Gauss-Legendre integration procedure was 

used in longitudinal direction, to eliminate undesirable phenomenon which is referred to as shear 

locking c.f. Zienkiewicz and Taylor [30]. The procedure consists of applying a reduced integration 
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rule to evaluate the stiffness matrix parts associated with shear strain energy and full integration for 

the remaining terms of the stiffness matrix. Taking into account the form of integrated function with 

respect to thickness coordinate, rectangular rule was performed c.f. Bergan [34]. 

 6-node quadratic Lagrangian zero thickness interface element. Reduced order Newton-Cotes 

integration rule was employed to limit oscillation of contact pressures under the foundation c.f. test 

1. 

 8-node quadratic Serendipity subsoil element. Reduced Gauss-Legendre quadrature was used c.f. 

Sloan and Randolph [35]. 
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Fig. 13. The contact model verification: a) the Zong-Ze at al. [33] experiment results, b) results of numerical 

simulation, c) loads and spatial discretisation of the system 
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11. SUMMARY AND CONCLUSIONS  

The paper presents an elaborated model of interaction between a structure and subsoil in plane strain 

conditions. The model enables static analysis of reinforced concrete structures supported by deformable 

subsoil with arbitrary system of geological layers under monotonic loads. The analysis consider the 

possibility of slip of the foundation along the subsoil surface. The contact model enables identification 

of slide and adhesion zones. In the nonlinear reinforced concrete structure model the following features 

are considered: crack creation in the tensioned zone, yielding of reinforcement, creation of irreversible 

strains in reinforcement and concrete, nonlinear stress distribution in the compression zone as well as 

the concrete – reinforcement interaction. The elasto-plastic model of the subsoil with non-associated 

flow rule prevents the continuum from dilation while yielding. 

 

Fig. 14. The recommended set of finite elements 

The elasto-plastic approach has been used to describe processes taking place in the subsoil and the 

reinforced concrete structure.  

The problem of constraints as well as the phenomena taking place at the contact area have been simulated 

by equivalent problem of elasto-plasticity. Such a description has simplified the task considerably. The 

formulation enabled receiving the solution with the use of elaborated computer program. 

A set of finite elements has been composed to model the subsoil (8-node quadratic Serendipity element), 

the reinforced concrete structure (3-node quadratic Lagrangian layered element) and the interface (6-

node quadratic Lagrangian zero thickness element). The proposed contact element enables connecting 

elements with different nodal degrees of freedom: translational for the subsoil, translational and 

rotational for the foundation raft.  

An important advantage of the prepared numerical model is the fact that it requires only a small number 

of mostly standard material parameters, values of which are used in everyday design. 

In the described set of finite elements, the method of numerical integration of individual stiffness 

matrices plays a very important role. In the numerical model of the RC plate, reduced integration rule 

for shear terms, full integration for bending terms and rectangular rule for integration with respect to the 

plate thickness are proved to be effective. In the case of the interface element, the use of the reduced 
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Newton-Cotes integration rule minimizes the undesirable phenomenon of contact stress oscillations. 

The use of reduced Gauss-Legendre quadratures integration of the soil element (8-node Serendipity), 

widely described in the literature, confirmed its effectiveness in the elastio-plastic solutions. 

The individual components of the set of elements have been validated. The distribution of contact 

stresses in the Sadowsky's test, the deflection of the RC Monnier’s beam and the soil – concrete contact 

in the direct shear apparatus were examined. The results turned out to be satisfactory. It would be 

advisable to validate the entire set of elements for problems containing an RC slab supported on the 

subsoil. However, finding such a benchmark that would enable the identification of the values of the 

parameters used in the proposed numerical model is a future challenge. 
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