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Abstract 

The subject of this paper is formulation of shear stress equations for plane two-
dimensional adhesive layers present in adhesively bonded joints. The adherends are as-
sumed to have the same thickness and be made of an isotropic material. The shape of the 
adherends in the joint plane is arbitrary. The adhesive joint can be subjected to a shear 
stress arbitrarily distributed on the adherends surfaces as well as normal and shear stress-
es arbitrarily distributed along the adherends edges. A set of two partial differential equa-
tions of the second order with shear stresses in the adhesive as unknowns has been for-
mulated. For a particular case of rectangular joints a set of 12 base functions has been 
derived; their appropriate linear combinations uniquely define shear stresses in the adhe-
sive for a joint loaded arbitrarily by a set of axial forces, bending moments and shear 
forces.  

Keywords: adhesively bonded joints, analytical models, two dimensional shear stress-
es in adhesive, isotropy, linear elasticity 

1. INTRODUCTION 

Analytical methods used to determine stresses in adhesive joints were first pre-
sented by Volkersen in [16], where he formulated and solved a one-dimensional 
ordinary differential equation for a shear stress in a lap joint loaded axially. 
Later, up till now many further papers appeared where analytical models of 
adhesive joints were discussed. However, the majority of them concerns particu-
lar generalizations of one-dimensional cases with axial loading. 
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An analytical description of an adhesive joint becomes much more complicated 
if the joint is subjected to a plane loading set. In these cases two-dimensional 
models in the joint plane should be formulated. 
First analytical models of a lap joint in a two-dimensional plane XY of the joint, 
loaded axially by a constant stress in the direction X have been proposed in [1, 
2]. It was assumed, that the joint was plane, the adherends had constant thick-
ness and were made of isotropic materials. In the analysis it was further as-
sumed that the shear stress τxy in the adherends was zero. For each adherend a 
set of two partial differential equations of the second order with constant coeffi-
cients in terms of normal stresses σx and σy in adherends was formulated. The 
shear stress in the adhesive, which represents a loading acting on the adherends 
was determined from simplified equilibrium equations of the adherends in the 
plane stress state with the shear stress τxy neglected. Introducing further simplifi-
cations, i.e. neglecting the coupling between the stresses σx and σy the set of 
partial differential equations was transformed to two independent ordinary dif-
ferential equations for which analytical solutions were presented. Taking into 
account the Poisson’s ratio it was shown that the adherends loaded in the X 
direction exhibit deformation in the Y direction, too. The consequence of this 
fact is the existence of shear stresses in the adhesive - τx in the loading direction 
and τy in the transverse direction. 
A more precise two-dimensional model of an adhesive joint based on the equa-
tions of the theory of elasticity was given in [8, 9]. A rectangular joint between 
isotropic and orthotropic adherends was considered. It was assumed that the 
isotropic adherend was loaded on its edges by constant normal stresses in X and 
Y directions as well as by a self-balanced set of shear stresses, while the ortho-
tropic adherend was not loaded. The analysis was subdivided into two stages: 
two-directional loading by the normal stresses and the shear stress loading.  
For the case of the two-directional loading by the normal stresses the same sim-
plifying assumptions were made and analogous partial differential equations to 
those from [1, 2] were obtained. Due to the presence of simultaneous action of 
loading in two directions the partial differential equations were not simplified to 
the ordinary form. The set of equations was solved using Fourier series expan-
sions. The shear stresses τx and τy in the adhesive were determined from the sim-
plified equilibrium equations with the shear stress τxy in the adherends neglected. 
For the case of the shear stress loading acting on the joint simplified equilibrium 
equations with the neglected normal stresses σx and σy in the adherends were 
used. The problem was described by a differential equation of the second order 
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in terms of the shear stress τxy in the orthotropic adherend. This equation was 
solved using Fourier series expansion. 
Earlier, in [6] and [7] rectangular joints and joints forming an infinite band 
loaded by normal and shear stresses were analyzed in a similar way. 
Analytical models presented in the literature contain simplifications with some 
stress components neglected in the equilibrium equations for the adherends, 
partial neglecting of coupling between the variables and particular simple cases 
of loading only taken into account. 
The current overview of analytical models for adhesive joints and their com-
parison can be found in [3, 13, 14]. However, there is no mention of equations 
for shear stresses in adhesive for two-dimensional joints. 
A general model of adhesive joints for anisotropic materials in the framework of 
the plane theory of elasticity, free from the above mentioned simplifications, 
was given in [10, 11], and a model for an orthotropic material in terms of dis-
placements - in [10, 12]. The problem was expressed by four partial differential 
equations of the second order with adherends displacements taken as the un-
knowns.  
The purpose of the present paper is to describe a particular case, for which those 
four equation in displacements can be transformed to two partial differential 
equations of the second order with shear stresses in the joint as the unknowns.  

2. MODEL OF TWO-DIMENSIONAL ADHESIVE JOINT 

The subject of this paper are adhesive joints made of two plane adherends bond-
ed by an adhesive. It is assumed that the plane elements are thin and have con-
stant, but in general different thickness values g1 and g2. The adherends can be 
made of the same or two different isotropic materials. The adhesive between the 
adherends is thin and has a constant thickness t.  
The adhesive joint is modelled as a plane two-dimensional system parallel to the 
plane 0XY in the orthogonal set of co-ordinates 0XYZ. The projections of the 
adherends and the adhesive to the plane have the same shape which may be 
arbitrary. The adhesive joint is loaded by forces parallel to the plane OXY 
which are distributed on surfaces and edges of the adherends (Fig. 1). 
It is assumed that effects of bending of the adherends are secondary and can be 
neglected. It is further assumed, that stresses across the adherend thickness are 
constant. Hence, the plane stress states parallel to the plane 0XY are formed. 
Thus, the adherends are considered as the plane stress elements parallel to the 
plane 0XY.  
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Fig. 1. Layout of an adhesive joint. 1  adherend 1,  2  adherend 2,  3  adhesive 

The adhesive is modelled as a linearly elastic medium with the stresses 
τx = τx(x,y), τy = τy(x, y) tangent to the joint mid-plane. It is assumed that the 
functions τx and τy are C2-continuous in terms of partial derivatives with respect 
to the variables x , y. The stresses in the adhesive are constant across their thick-
ness. Due to the action of the shear stresses τx and τy in the adhesive a shear 
deformation is observed and it leads in turn to relative displacements of adhe-
sive layers in the direction tangent to the mid-plane of the joint. 
Displacements of the adherends 1 and 2 are given by the functions u1 = u1(x, y) 
and u2 = u2(x, y) in the direction X and the functions υ1 = υ1(x, y) and υ2 = υ2(x, y) 
in the direction Y. It is assumed that the functions u1 , u2 , υ1 and υ2 are C2-
continuous in terms of partial derivatives with respect to the variables x , y. 
The distributed loading on the external surfaces of the adherends 1 and 2 is ex-
pressed in terms of components parallel to the axes X and Y denoted by q1x = 
q1x(x, y), q2x = q2x(x, y) and q1y = q1y(x, y), q2y = q2y(x, y). The loading is positive 
when its orientation coincides with that of the axis X or Y. 

3. CONSTITUTIVE EQUATIONS FOR THE ADHERENDS 

It is assumed that the adherends 1 and 2 can be made of two different isotropic 
materials, for which the constitutive equations take the form of the generalised 
Hooke’s law  
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where Ek , Gk stand for Young’s and shear moduli, respectively, νk is the Pois-
son's ratio for the adherend material k (k = 1, 2). The moduli Ek , Gk  and νk are 

inter-related by kkk GE )1(2 ν+= . Having solved the set of Eqs. (1.1) - (1.3) in 
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4. CONSTITUTIVE EQUATIONS FOR THE ADHESIVE 

It is assumed that the adhesive is made from a linearly elastic material with the 
shear modulus Gs. Due to the action of the shear stresses τx and τy in the adhe-
sive a shear deformation occurs resulting in a relative displacement of the adhe-
rends in the directions parallel to the mid-plane of the adhesive. The shear stres-
ses τx and τy in the adhesive are expressed in terms of the displacements of the 
adherends u1 , u2 , υ1 , υ2 by the relations 
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5. STRESS EQUATIONS FOR THE ADHESIVE 

The equations with the unknown displacements u1 , u2 , υ1 , υ2 derived in [10, 11, 
12] for isotropic materials take the form  
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Derivation of general differential equations for the stresses in the adhesive 
should involve the elimination of the displacements u1 , u2 , υ1 , υ2 from the dis-
placement Eqs. (4.1) − (4.4), where the expressions u1 − u2 and υ1 − υ2 should be 
replaced by the relations (3). The elimination of the functions u1 , u2 , υ1 , υ2  
involves algebraic operations including numerous differentiations. As a result 
one gets complicated expressions and the order of the equations is artificially 
increased. Additionally, one has to formulate boundary conditions, which repre-
sent differential identities yielding from the operations carried out, which usual-
ly do not possess any physical interpretation. Due to these facts general equ-
ations for the stresses in the adhesive were not formulated because they would 
have had an order higher than two and would have been much more complicated 
than the equations derived in the present paper. 
In some particular cases derivation of the stress equations for the adhesive is 
simple to carry out by subtracting sides of displacements equations in order to 
get equations depending only on the displacements differences u1 − u2 and  υ1 − 
υ2. In such equations the constitutive relations for the adhesive can be used di-
rectly and they yield the equations for the stresses in the adhesive. Such an ap-
proach does not raise the order of equations and does not require any additional 
boundary conditions. 
This procedure can be used for two different isotropic materials, however it 
must be assumed that the Poisson’s ratios are identical for both materials.  
Subtracting the sides of the Eq. (4.2) from the Eq. (4.1) and the Eq. (4.4) from 
the Eq. (4.3) the description in displacements (3), (4.1) − (4.4) is transformed 
into a description in stresses. However, the equality must be maintained  
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Hence, assuming the equivalent Poisson’s ratio ν instead of ν1 and ν2, for exam-
ple ν = 0,5(ν1 + ν2), and denoting 
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Taking advantage of the relations (3), displacements can be eliminated from the 
Eqs. (7.1) − (7.2) and the following stress equations is obtained 
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The characteristic form ),( yx ξξA  of the main part of the set of Eqs. (9.1)−(9.2) 

takes the form: 
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Thus, this characteristic form ),( yx ξξA  is positively definite and the set 

(9.1)−(9.2) is elliptic. 
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6. BOUNDARY CONDITIONS 

The adherends 1 and 2 are limited by circumferential edge surfaces perpendicu-
lar to the plane 0XY. The width of this circumferential surface is equal to the 
adherend thickness. Let pkx and pky (k = 1, 2) denote the stresses acting on the 
edge surfaces of the adherend k. It is assumed that the stresses pkx and pky are 
parallel to the axes X and Y, respectively and that they are constant across the 
adherend thickness. These stresses are treated as imposed external loading on 
the edges of the adherends in the plane parallel to the plane 0XY. 
The boundary conditions expressed in displacements derived in [10, 12] for 
isotropic materials take the form  
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where l and m are direction cosines of the normal to the edge of the adherend 
1 or 2.  
The equivalent Poisson’s ratio ν is substituted by the Eqs. (10.1) - (10.4) instead 
of the Poisson’s ratios ν1 and ν2. Subtracting the Eq. (10.2) from (10.1) and the 
Eq. (10.4) from (10.3) yields 
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Taking advantage of the relation (3), displacements can be eliminated from the 
Eqs. (11) and (12). Having done these operations the boundary conditions in 
stresses are as follows: 
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In the stress formulation (9.1) - (9.2) the boundary conditions (13.1) - (13.2) are 
sufficient for a unique derivation of the shear stresses τx  and τy . 

7. VERIFICATION OF THE STRESS EQUATIONS 

If the adherends are made from the same material then E1 = E2  and ν = ν1 = ν2. 
In this case, within the scope of the assumptions made, the Eqs. (9.1) − (9.2) 
yield the stresses in the adhesive exactly. If the adherends are made of two ma-
terials with differing Poisson’s ratios ν1 ≠ ν2 , then the Eqs. (9.1) − (9.2), inclu-
ding the equivalent Poisson’s ratio ν, describe the stresses in the adhesive in an 
approximate way. 
The solution of the formulation in displacements (3), (4.1) − (4.4) can be used to 
compare results and assess the accuracy of the stress Eqs. (9.1) − (9.2), with the 
equivalent Poisson’s ratio ν adopted. 
It can be stated [10] that for ν1 ≠ ν2 solutions of the stress Eqs. (9.1) − (9.2), with 
the equivalent Poisson’s ratio ν = 0,5(ν1 + ν2) are good approximations of the 
exact solutions. In the light of small differences between ν1 and ν2 a relative 
error in resultant stresses in the adhesive is generally about 1% of their maximal 
values. Calculations carried out for various values of the Poisson’s ratio from 
the range 0 ≤ ν ≤ 0,5 indicate, that the solutions of the Eqs. (9.1) − (9.2) are 
approximately linear functions of the equivalent Poisson’s ratio ν. It means, that 
the solution of the stress Eqs. (9.1) − (9.2) with the equivalent Poisson’s ratio ν 
= 0,5(ν1 + ν2) is approximately equal to the arithmetic mean from the solutions 
obtained separately for ν = ν1 and ν = ν2 . 
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8. RECTANGULAR JOINTS UNDER COMPLEX LOADING 

It is assumed that the loading q1x, q2x, q1y, q2y on the adherends surfaces is zero. 
Thus, the Eqs. (9.1) − (9.2) take the form 
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In this case any loading present at the adherends edges is included in the bound-
ary conditions. 
For practical purposes a particular group of loading sets can be distinguished by 
the assumption that the adherend edges are loaded by the stresses resulting from 
the axial forces N, bending moments M and shear forces T, according to Fig. 2. 
It is assumed that due to the action of these forces on the adherend edges uni-
formly distributed normal stresses, linearly varying normal stresses and para-
bolic shear stresses, respectively, are formed (Fig. 3).  
Boundary conditions (13.1) - (13.2) for a rectangle can be given in the form 
 − upper horizontal edge (l = 0, m = 1) 
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Fig. 2. Concentrated loading on edges of adherends (k  = 1, 2) 
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Fig. 3. Schematic graphs of the functions lklkdkdkpkpkgkgk NTNTNTNT ,,,,,,,  

 − right vertical edge (l = 1, m = 0) 
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 − lower horizontal edge (l = 0, m = −1) 
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 − left vertical edge (l = −1, m = 0) 
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and 

ng = 
2211 EgEg

2g1g NN
− ,   mg = 

2211 EgEg
2g1g MM

− ,   tg = 
2211 EgEg

2g1g TT
− , (20.1)

nd = 
2211 EgEg

2d1d NN
− ,   md = 

2211 EgEg
2d1d MM

− ,   td = 
2211 EgEg

2d1d TT
− , (20.2)

n L = 
2211 EgEg

2L1L NN − ,   m L = 
2211 EgEg

2L1L MM − ,   t L = 
2211 EgEg

2L1L TT − , (20,3)

np = 
2211 EgEg

2p1p NN
− ,  mp = 

2211 EgEg
2p1p MM

− ,   tp = 
2211 EgEg

2p1p TT
− . (20.4)

The structure of the formulae (20.1) - (20.4) yields that there exists an infinite 
number of sets of edge loading cases for which the functions Tg , Ng , … take the 
same values. Thus, an infinite number of loading sets (not necessarily in equilib-
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rium) exists, which lead to the same solutions to the stress equations. Any vec-
tor 

f = (ng , mg , tg , nd , md , td , n L , m L , t L , np , mp , tp)∈R12  

generates the solution of the Eqs. (14.1) - (14.2). This solution is denoted by 
(τx , τy)f . The vectors  

 

e1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),                                    
 

e2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),                                    
.  .  .   

 

e12 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)    
                                                                                            
form the base of the linear space R12. It is easy to verify that the set of all solu-

tions (τx , τy)f , f ∈R12, is a linear space with the base (τx , τy)ei , i = 1, 2, …, 12. 
Then for an arbitrary vector  

f = (ng , mg , tg , nd , md , td , n L , m L , t L , np , mp , tp) ∈ R12 

the solution (τx , τy)f of the boundary value problem (14.1) - (14.2), (15) - (18) 
can be given by the formula 

(τx , τy)f =  ng·(τx , τy)e1 + mg·(τx , τy)e2 + tg·(τx , τy)e3 + nd·(τx , τy)e4 + 
 

           + md·(τx , τy)e5 + td·(τx , τy)e6 + n L·(τx , τy)e7 + m L·(τx , τy)e8 +      
 

           + t  L·(τx , τy)e9 + np·(τx , τy)e10 + mp·(τx , τy)e11 + tp·(τx , τy)e12 .  

(21)

The base functions are obtained by 12-fold solving of the boundary value prob-
lem (14.1) - (14.2), (15) - (18) for the loading cases defined by the vectors 
e1, …, e12.The functions (τx , τy)ei for i = 1, 2, …, 12  are shown in Figs. 4−15. 
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Fig. 4. The base function (τx , τy)e1 
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Fig. 5. The base function (τx , τy)e2 

 
 

         

 

 
                             τx                                                                 τy 
 

Fig. 6. The base function (τx , τy)e3 
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Fig. 7. The base function (τx , τy)e4 
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Fig. 8. The base function (τx , τy)e5
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Fig. 9. The base function (τx , τy)e6 
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Fig. 10. The base function (τx , τy)e7 
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Fig. 11. The base function (τx , τy)e8 
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Fig. 12. The base function (τx , τy)e9 
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Fig. 13. The base function (τx , τy)e10 
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Fig. 14. The base function (τx , τy)e11 
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Fig. 15. The base function (τx , τy)e12 

Let us consider an adhesive joint between two steel adherends with the dimen-
sions: lx = 5.0 cm, ly = 4.0 cm. The adherend thicknesses are g1 = g2 = 0.4 cm 
and the adhesive thickness is t = 0.04 cm. The material constants are: E1 = E2 = 
2.05×107 N/cm2, ν1 = ν2 = 0.281, Gs = 4.5×105 N/cm2. The adherends are subjec-
ted to the loading: N1d = 4.0 N, M1L = −12.0 N·cm, N1p = 8.0 N, T2g = −8.0 N, 
T2p = −4.0 N. The edge stress due to these loading cases are presented in Fig. 
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16. For the loading vector f = (0 , 0 , t g , n d , 0 , 0 , 0 , m L , 0 , n  p , 0 , t p) 
from the formulae (20.1) - (20.4) one gets 
 

t g = 9.7561×10−7 cm, n d = 4.8780×10−7 cm, m L = −14.6341×10−7 cm2, 
n p = 9.7561×10−7 cm,    t p = 4.8780×10−7 cm. 
 

  

 
 

Fig. 16. Adhesive joint subjected to a complex loadin 

According to (21) the solution is given by  
(τx , τy)  f = t   g·(τx , τy)e3 + n   d·(τx , τy)e4 + m   L·(τx , τy)e8 + n   p·(τx , τy)e10 + t    p·(τx , τy)e12 
and is presented in Fig. 17. 
 

           

 

 
 

                        Stress τx                                                                        Stress τy 
            max τx = 1.5187 N/cm2                                                max τy = 0.94237 N/cm2 

Fig. 17. Stresses in adhesive of a joint under a complex loading 
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9. FINAL REMARKS 

Solutions of the Eqs. (14.1) - (14.2) for the shear stress in the adhesive possess 
interesting algebraic properties. One can conclude from the formulae (20.1) - 
(20.4), that there exists an infinite number of boundary loading layouts in a form 
of normal forces, moments and shear forces (not necessarily in equilibrium) 
which lead to the same solution of the boundary value problem (14.1) - (14.2), 
(15) - (18). In the set of loadings an equivalence relation can be introduced, 
which identifies loading types leading to the same solution of the boundary va-
lue problem. Therefore, the loading set can be subdivided into disjoint equiva-
lence classes. One equivalence class consists of all equivalent loading types, i.e. 
the ones leading to the same solution. In the set of equivalence classes a linear 
space structure can be introduced and called the loading space. Then a linear 
isomorphism of the loading space and the space of solutions for the boundary 
value problem (14.1) - (14.2), (15) - (18) can be constructed. For the boundary 
loading types consisting of normal forces, moments and shear forces the loading 
space and the solution space are 12-dimensional. Hence, there exists a base con-
sisting of 12 base functions in the solution space, which generate all solutions of 
the boundary value problem (14.1) - (14.2), (15) - (18). 
Solutions for stresses in the adhesive are uniquely defined by static boundary 
conditions. 
It is also worth noting the influence of the Poisson’s ratio ν on properties of 
solutions for such plane stress elements like adhesive joints. The role of the 
coefficient ν is emphasized when analyzing problems formulated for single 
plane stress elements, where the cases without the Poisson’s ratio are distin-
guished. For instance, the stress state in a single element with a constant thick-
ness loaded on edges only or under a constant self weight does not depend on 
the Poisson’s ratio. Generally, when a loading is applied on the element surface 
only or when the boundary conditions concern displacements, then the solution 
depends on the Poisson’s ratio [4, 5, 15]. This is the case of the adhesive joints 
analyzed in the present paper, because an adherend can be viewed as a plane 
stress element loaded on its surface by stresses from an adhesive. 
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RÓWNANIA NAPRĘŻEŃ W PLASKICH DWUWYMIAROWYCH SPOINACH 
KLEJOWYCH  

S t r e s z c z e n i e  

Przedmiotem pracy jest sformułowanie równań dla naprężeń stycznych w płaskich dwuwymiaro-
wych spoinach występujących w połączeniach klejowych. Elementy połączenia mają stałe grubo-
ści i są wykonane materiałów izotropowych. Kształt elementów w płaszczyźnie połączenia może 
być dowolny. Połączenia klejowe mogą być obciążone naprężeniami stycznymi dowolnie rozłożo-
nymi na powierzchniach elementów oraz naprężeniami normalnymi i stycznymi dowolnie rozło-
żonymi na krawędziach elementów. Sformułowano układ dwóch równań różniczkowych cząstko-
wych rzędu drugiego, w których niewiadomymi są naprężenia styczne w spoinie. Dla połączeń 
prostokątnych zbudowano zbiór 12 funkcji bazowych, których odpowiednia kombinacja liniowa 
jednoznacznie określa naprężenia styczne w spoinie połączenia klejowego obciążonego dowolnym 
układem sił normalnych, momentów zginających i sił poprzecznych 

Słowa kluczowe: połączenie klejowe, modele analityczne, dwuwymiarowa analiza 
naprężeń w spoinie klejowej, izotropia, sprężystość liniowa 
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