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Abstract

The subject of this paper is formulation of sheaess equations for plane two-
dimensional adhesive layers present in adhesivehgéd joints. The adherends are as-
sumed to have the same thickness and be madeisdtempic material. The shape of the
adherends in the joint plane is arbitrary. The atlleejoint can be subjected to a shear
stress arbitrarily distributed on the adherendfases as well as normal and shear stress-
es arbitrarily distributed along the adherends sdgeset of two partial differential equa-
tions of the second order with shear stresseseratthesive as unknowns has been for-
mulated. For a particular case of rectangular gomtset of 12 base functions has been
derived; their appropriate linear combinations ueig define shear stresses in the adhe-
sive for a joint loaded arbitrarily by a set of @xforces, bending moments and shear
forces.

Keywords: adhesively bonded joints, analytical nisdevo dimensional shear stress-
es in adhesive, isotropy, linear elasticity

1. INTRODUCTION

Analytical methods used to determine stresses lieside joints were first pre-
sented by Volkerseim [16], where he formulated and solved a one-dsiaral
ordinary differential equation for a shear strassailap joint loaded axially.
Later, up till now many further papers appeared retaenalytical models of
adhesive joints were discussed. However, the ntgjofithem concerns particu-
lar generalizations of one-dimensional cases withl oading.
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An analytical description of an adhesive joint bmes much more complicated
if the joint is subjected to a plane loading sattHese cases two-dimensional
models in the joint plane should be formulated.

First analytical models of a lap joint in a two-dinsional plane XY of the joint,
loaded axially by a constant stress in the direcHohave been proposed in [1,
2]. It was assumed, that the joint was plane, titeeeends had constant thick-
ness and were made of isotropic materials. In tredyais it was further as-
sumed that the shear stregsin the adherends was zero. For each adherend a
set of two partial differential equations of thesed order with constant coeffi-
cients in terms of normal stressgsando, in adherends was formulated. The
shear stress in the adhesive, which representsdanbp acting on the adherends
was determined from simplified equilibrium equasoof the adherends in the
plane stress state with the shear strgsseglected. Introducing further simplifi-
cations, i.e. neglecting the coupling between thessess, and gy the set of
partial differential equations was transformedvo independent ordinary dif-
ferential equations for which analytical solutiomere presented. Taking into
account the Poisson’s ratio it was shown that tleeeends loaded in the X
direction exhibit deformation in the Y directiomaot The consequence of this
fact is the existence of shear stresses in thesagher, in the loading direction
andz in the transverse direction.

A more precise two-dimensional model of an adhegir@ based on the equa-
tions of the theory of elasticity was given in §§, A rectangular joint between
isotropic and orthotropic adherends was consideitedas assumed that the
isotropic adherend was loaded on its edges by aphsbrmal stresses in X and
Y directions as well as by a self-balanced sethebs stresses, while the ortho-
tropic adherend was not loaded. The analysis whdigded into two stages:
two-directional loading by the normal stresses thiedshear stress loading.

For the case of the two-directional loading by leemal stresses the same sim-

plifying assumptions were made and analogous palifferential equations to
those from [1, 2] were obtained. Due to the presasfcsimultaneous action of
loading in two directions the partial differentequations were not simplified to
the ordinary form. The set of equations was solvgidg Fourier series expan-
sions. The shear stressgsandz, in the adhesive were determined from the sim-
plified equilibrium equations with the shear strggén the adherends neglected.
For the case of the shear stress loading actinbeojoint simplified equilibrium
equations with the neglected normal stresgeandoy, in the adherends were
used. The problem was described by a differentjgh@on of the second order
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in terms of the shear stresg in the orthotropic adherend. This equation was
solved using Fourier series expansion.

Earlier, in [6] and [7] rectangular joints and jwnforming an infinite band
loaded by normal and shear stresses were analyzedimilar way.

Analytical models presented in the literature com&mplifications with some
stress components neglected in the equilibrium témpe for the adherends,
partial neglecting of coupling between the variatded particular simple cases
of loading only taken into account.

The current overview of analytical models for adixegoints and their com-
parison can be found in [3, 13, 14]. However, therao mention of equations
for shear stresses in adhesive for two-dimensijoiras.

A general model of adhesive joints for anisotrapaterials in the framework of
the plane theory of elasticity, free from the abonentioned simplifications,
was given in [10, 11], and a model for an orthoizapaterial in terms of dis-
placements - in [10, 12]. The problem was expressefbur partial differential
equations of the second order with adherends dispiants taken as the un-
knowns.

The purpose of the present paper is to descrilzatecplar case, for which those
four equation in displacements can be transfornoetivb partial differential
equations of the second order with shear streagbe jjoint as the unknowns.

2. MODEL OF TWO-DIMENSIONAL ADHESIVE JOINT

The subject of this paper are adhesive joints nohdeo plane adherends bond-
ed by an adhesive. It is assumed that the plameeglis are thin and have con-
stant, but in general different thickness valgeandg,. The adherends can be
made of the same or two different isotropic matsriihe adhesive between the
adherends is thin and has a constant thickiness

The adhesive joint is modelled as a plane two-dgimeral system parallel to the
plane OXY in the orthogonal set of co-ordinates @XYhe projections of the
adherends and the adhesive to the plane have the slaape which may be
arbitrary. The adhesive joint is loaded by forcesaplel to the plane OXY
which are distributed on surfaces and edges ahdiherends (Fig. 1).

It is assumed that effects of bending of the adius@re secondary and can be
neglected. It is further assumed, that stressassacthe adherend thickness are
constant. Hence, the plane stress states paralkblet plane OXY are formed.
Thus, the adherends are considered as the plaess glements parallel to the
plane OXY.
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Fig. 1. Layout of an adhesive joint.ddherend 1, 2xdherend 2, Zadhesive

The adhesive is modelled as a linearly elastic omadwith the stresses
I = L(X,Y), Iy = §(X,y) tangent to the joint mid-plane. It is assumed the
functionsr, andr, are C-continuous in terms of partial derivatives witlspect
to the variables, y. The stresses in the adhesive are constant atmisshick-
ness. Due to the action of the shear stregsasd r, in the adhesive a shear
deformation is observed and it leads in turn tatie¢ displacements of adhe-
sive layers in the direction tangent to the midaplaf the joint.

Displacements of the adherends 1 and 2 are givehébfunctionsu; = uy(X,y)
andu, = Ux(x,y) in the direction X and the functioms = v1(X,y) andv, = vx(X,y)

in the direction Y. It is assumed that the funcsien, u,, v; and v, are G-
continuous in terms of partial derivatives withpest to the variables, y.

The distributed loading on the external surfacethefadherends 1 and 2 is ex-
pressed in terms of components parallel to the Xxaad Y denoted by, =
Au(X.Y), Gx = Ga(X.Y) and sy = Gay(X.Y), Gy = G(X,y). The loading is positive
when its orientation coincides with that of thesaXior Y.

3. CONSTITUTIVE EQUATIONSFOR THE ADHERENDS

It is assumed that the adherends 1 and 2 can be afado different isotropic
materials, for which the constitutive equationsetétke form of the generalised
Hooke’s law

1
gkx:E(ka_Vkay)7 (1.2)
K

1
gky = E (Jky - Vkakx) (12)
k
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1
ykxy—akrkxy’ (1.3)

whereEy, Gy stand for Young's and shear moduli, respectivelyis the Pois-
son's ratio for the adherend matekdk = 1, 2). The modulg, , Gy andvy are

inter-related byE, = 2(1+v,)G, . Having solved the set of Egs. (1.1) - (1.3) in
terms of stresses and taking into account the Gagebmetric equations

_du, _ 0y, _0u, 9y,
Tk BTy YT o

one gets the constitutive relations in the follogviorm

E, %+ v.E, 9u,

a- = 1
“O1-p? ax 1-v2 dy (2.1)
_VvE du . E 00y,
o, = —k 4 :
Wo1-v? ax  1-v? dy (2.2)
E. ou, , 9y,
T = —p k| ,
w2+ uk)( dy  ox j (2:3)

4. CONSTITUTIVE EQUATIONSFOR THE ADHESIVE

It is assumed that the adhesive is made from arinelastic material with the
shear modulusss. Due to the action of the shear stresgeand 7 in the adhe-
sive a shear deformation occurs resulting in aixvealisplacement of the adhe-
rends in the directions parallel to the mid-plaf¢éhe adhesive. The shear stres-
sesty and r, in the adhesive are expressed in terms of thdadisments of the
adherendsi;, U, v1, 02 by the relations

G G
Tx :Ts(ul_uz)- TszS(Ul_Uz)- (3)

5. STRESSEQUATIONSFOR THE ADHESIVE

The equations with the unknown displacementsu,, v, , v, derived in [10, 11,
12] for isotropic materials take the form
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¢ ay* 1-v,0%y tg, G, 9,G,

s qu
U, —U,) t
oy’ 1-v, 0%y tg, Gl( 1 m02) 9.G,

2 2 2
v [1+1+V1J6 v 14y, 0% 1 G =0, (43)

L+
ox’ 1-v,

0-0)+—2-=0.  (44)

0°v, [, 1+v, 0%, 14V, 0%, 1 G,
ay> 1-v, 0%y tg, G, 9,G,

ox’ 1-v,

Derivation of general differential equations foretstresses in the adhesive
should involve the elimination of the displacemantsus, , v; , v, from the dis-
placement Egs. (4.1) (4.4), where the expressions— u, andv; — v, should be
replaced by the relations (3). The elimination loé functionsu; , U, , v1 , v,
involves algebraic operations including numerou$edintiations. As a result
one gets complicated expressions and the ordemeokdjuations is artificially
increased. Additionally, one has to formulate barmdconditions, which repre-
sent differential identities yielding from the options carried out, which usual-
ly do not possess any physical interpretation. Ru¢éhese facts general equ-
ations for the stresses in the adhesive were motulated because they would
have had an order higher than two and would hage baich more complicated
than the equations derived in the present paper.

In some particular cases derivation of the streggmions for the adhesive is
simple to carry out by subtracting sides of disptaents equations in order to
get equations depending only on the displacemefiesehcesu; — u, and v, -

v2. In such equations the constitutive relationstfar adhesive can be used di-
rectly and they vyield the equations for the streseehe adhesive. Such an ap-
proach does not raise the order of equations aed dot require any additional
boundary conditions.

This procedure can be used for two different igmtranaterials, however it
must be assumed that the Poisson’s ratios areiédéfar both materials.
Subtracting the sides of the Eq. (4.2) from the @dl) and the Eq. (4.4) from
the Eq. (4.3) the description in displacements (8)1) — (4.4) is transformed
into a description in stresses. However, the etyualust be maintained
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1+v, _1+v,
1-v, 1-v,

(5)

Hence, assuming the equivalent Poisson’s ratitstead ofy; andv,, for exam-
plev = 0,5¢; +v,), and denoting

a=—-, (6)

and then subtracting the sides of the Eq. (4.2nf¢é.1) and the Eq. (4.4) from
(4.3) one gets

a+@a“§g”9+a“g;%’+ay%;;”—k%w—wr+§é~é§§=0, (7.1)
0*(u,-u,) CU-u), OU-w) a0 Gy %y
g tlira) T T
where
w:%(1.+1J:%“WQ(1-+1J (8)
t lgG 9G, t (gE oE)

Taking advantage of the relations (3), displacemean be eliminated from the
Egs. (7.1) (7.2) and the following stress equations is obtained

2 2 0°
(1+a)aix +aT2x +qa T)’ _kzz-x.‘_g i—i :O, (91)
ox 6y 6>@y t glGl ngz
az 62 2
O LTI SC | B VI T 9.2)
ox oy oy 7 t{gG 909G

The characteristic form\(¢,,¢, f the main part of the set of Egs. (9:(B.2)
takes the form:
2 2
AE£)=|ITOERE akd,
aké,  E+@ra)g
Thus, this characteristic formA(¢,,¢, )s positively definite and the set
(9.1)-(9.2) is elliptic.

=@+a)(&i+4))
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6. BOUNDARY CONDITIONS

The adherends 1 and 2 are limited by circumferbatlge surfaces perpendicu-
lar to the plane 0XY. The width of this circumfetiah surface is equal to the
adherend thickness. Lets andpy (k = 1, 2) denote the stresses acting on the
edge surfaces of the adherdndt is assumed that the strespgsandpy, are
parallel to the axes X and Y, respectively and thay are constant across the
adherend thickness. These stresses are treatespased external loading on
the edges of the adherends in the plane paraltbetplane 0XY.

The boundary conditions expressed in displacemeetived in [10, 12] for
isotropic materials take the form

1_2V1 (%l +%j[ﬂ+(vl% +%jl]n = 1_—E1V12 Py (10.3)

wherel andm are direction cosines of the normal to the edgthefadherend
1or?2.

The equivalent Poisson’s ratids substituted by the Egs. (10.1) - (10.4) instead
of the Poisson’s ratios; andv,. Subtracting the Eq. (10.2) from (10.1) and the
Eq. (10.4) from (10.3) yields

a(Ul_uz)_‘_Va(U1_Uz) []]+1_V a(ul—u2)+6(U1—U2) n=
ox ay 2 ay ox

Cdy? &_@]
( V)(Ei 5

(11)
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1—v(a(u1—u2) . a(ul—uz)jm{va(ul—uz) . a(ul—uz)jﬁm:

2 0 0 0 0
y X X y 12)
=(@1- VZ)(& _ﬁJ )
E &

Taking advantage of the relation (3), displacemeats be eliminated from the
Egs. (11) and (12). Having done these operatioasbtiundary conditions in
stresses are as follows:

: .2
CLPSPVLLIR R 2 (L UL [ Gl [ PN Y0 [P
ox oy 2 lay ox t EE

_ YA
1V (00, 00 ) gy 0% 4 0Ty | = @2VOG (PBy  Pay) gy
2 (dy Ox ox oy t E E

In the stress formulation (9.1) - (9.2) the bougdaonditions (13.1) - (13.2) are
sufficient for a unique derivation of the sheaesses, andz, .

7. VERIFICATION OF THE STRESSEQUATIONS

If the adherends are made from the same mategalgh=E, andv =v; = vs.

In this case, within the scope of the assumptioasenthe Egs. (9.1) (9.2)
yield the stresses in the adhesive exactly. Ifatlieerends are made of two ma-
terials with differing Poisson’s ratiog # v, , then the Egs. (9.1) (9.2), inclu-
ding the equivalent Poisson’s ratipdescribe the stresses in the adhesive in an
approximate way.

The solution of the formulation in displacementy (8.1)— (4.4) can be used to
compare results and assess the accuracy of thes &ogs. (9.1} (9.2), with the
equivalent Poisson’s ratioadopted.

It can be stated [10] that for # v, solutions of the stress Egs. (9-1(9.2), with
the equivalent Poisson’s ratio= 0,5¢; + v,;) are good approximations of the
exact solutions. In the light of small differendestweenv, andv, a relative
error in resultant stresses in the adhesive isrgén@about 1% of their maximal
values. Calculations carried out for various valoéshe Poisson’s ratio from
the range < v < 0,5 indicate, that the solutions of the Eqgs. (%:19.2) are
approximately linear functions of the equivalentd3on’s ratio. It means, that
the solution of the stress Egs. (9-1(9.2) with the equivalent Poisson’s raito

= 0,5¢; + v,) is approximately equal to the arithmetic meamfrihe solutions
obtained separately for=v; andv = v, .
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8. RECTANGULAR JOINTSUNDER COMPLEX LOADING

It is assumed that the loading, O, Chy, Oz ON the adherends surfaces is zero.
Thus, the Egs. (9.1 (9.2) take the form

2 2 0°r
AL+a) ‘ZXTZX + ?ayTZX +a a)@; ~K?r, =0, (14.1)
’r 0°r 2
o e +a%§ ~K?r, =0. (14.2)

In this case any loading present at the adheretgissds included in the bound-

ary conditions.

For practical purposes a particular group of logdiats can be distinguished by

the assumption that the adherend edges are logdibe Istresses resulting from

the axial forcedN, bending momentBl and shear forceg, according to Fig. 2.

It is assumed that due to the action of these $oarethe adherend edges uni-

formly distributed normal stresses, linearly vagyinormal stresses and para-

bolic shear stresses, respectively, are formed &ig.

Boundary conditions (13.1) - (13.2) for a rectangde be given in the form

— upper horizontal edgé £ O,m= 1)
%+% =T.(x), Vv
gy ox °

or, O0r
X 4 y — N ,
x Ty ¢(X) (15)

T Mip
Y
My T
Tig M
kd

Nyg

L e kv e J(
L 1

Fig. 2. Concentrated loading on edges of adher@ndsl, 2)
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Fig. 3. Schematic graphs of the functiong, N, T, ,, N

kp?
- right vertical edgel(= 1,m= 0)

ar, 0T or
—+—==T(y),

a7,
x+py—Y =N
oy o o(Y),

0x ay

— lower horizontal edgd € 0,m=-1)

0 0
%+i:—Td(X), V%'i‘i:_Nd(X),
dy ox ox oy

— left vertical edgel(=-1,m=0)

0 0
%+i:—'|’l( )’ %+V_T:—N (y)
dy 0x 0x oy

where
.2
N()_SG(l v?) mng+GS(1 v)mg'
2113 2t
.2
N (X )_M x [, +Mmd'
213 2tl

X X

Tip(¥) Nip(¥)

de ' de ’Tkl ' Nkl

(16)

17)

(18)

(19.1)

(19.2)
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—y2 _,2
3G (1 V)yEn+GS(1 ve)

N, (X) = m, ,
=B ym e SO m, 19.3)
N (X)_SGs(l—vz) N +Gs(l—vz)m 9
0=y, + (19.4)
3G.A+v
Tg (X) _%( X X2) Bg ' (195)
3G, 1+v
T,(0= 2(|3 )0z -3, (19.6)
3G, (1+v
Ty =t az -y, (19.7)
y
3G, (L+v)
T (y)=———— 23 (7 -y, (19.8)
and
N M M T T
ngz—lé - Zé , Mg= —& -2 =19 23 - (o0])
0.5 0,k (o P =P o PY =P g,E;  9,E,
N N M M T T
ng=—t¢ _ Maa g o Tha  Mag - Tie T (20.2)
g:E; 9E, g,E; 9,E, 0:E; 9E,
n, = Ny Ny o m= My _ My Ct = Ty Ty ’ (20,3)
gk 9B (o1 SPRs PY =P 9,E; 9,E,
N N M M T T
Np=—p ——2 my=—P2 -2 f=_P®__ % (4
(o P =F PY =P (o P =H PY =P 9,5, 9,E,

The structure of the formulae (20.1) - (20.4) y#ettat there exists an infinite
number of sets of edge loading cases for whiclitthetionsTy , Ny , ... take the
same values. Thus, an infinite number of loading §®ot necessarily in equilib-



STRESS EQUATIONS FOR ADHESIVE IN TWO-DIMENSIONAL ADHESIVELY 87
BONDED JOINTS

rium) exists, which lead to the same solutionshi gtress equations. Any vec-
tor

f = (ng, Mg, tg, Ng, Mg, tg, N, My, t, Ny, My, t,) IR
generates the solution of the Eqgs. (14.1) - (14[B)s solution is denoted by
(7, 7y)r. The vectors

e1=(1,0,0,0,0,0,0,0,0,0,0,0),
e2=(0,1,0,0,0,0,0,0,0,0,0,0),

el2=(0,0,0,0,0,0,0,0,0,0,0,1)

form the base of the linear spaR¥. It is easy to verify that the set of all solu-
tions @, 7,)r , f LIR™, is a linear space with the basg,()ei, i = 1, 2, ..., 12.
Then for an arbitrary vector

f: (ngl mg, tgl nd1 mdl td1 nLl mL1 tLl np1 mpa tp) |—| R12

the solution %, 7)r of the boundary value problem (14.1) - (14(2p) - (18)
can be given by the formula

(TXl Ty)f = ng'(Tx ) Ty)el + mg'(Tx ) Ty)e2 + tg'(Tx ) Ty)e3 + nd'(Tx ) Ty)e4 +

+md'(Tx ) Ty)e5 + td'(Tx ) Ty)e6 + I']L'(Tx ) Ty)e7 + IT]L'(Tx ) Ty)e8 + (21)

Hi @, 1y)eo + Np(Tx » Ty)ero + Mp- (o, Ty)err + G (o » Ty)er2-
The base functions are obtained by 12-fold solahthe boundary value prob-
lem (14.1) - (14.2)(15) - (18) for the loading cases defined by thetwes
el, ...,el2The functions4,, 7)) fori =1, 2, ..., 12 are shown in Figs:1b.

v Y

Tx

Fig. 4. The base function(, ,)e1
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Y
X
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Ty Ty
Fig. 5. The base functiony(, z)e>
Y
Y
X
Ty Ty
Fig. 6. The base function(, 7,)e3
Y
Tx
Fig. 7. The base function(, 7,)es
Y

Ty
Fig. 8. The base function(, zy)es
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v Y
X
Tx ‘L'y
Fig. 9. The base functiony(, z,)es
Y Y
\ y
X
=
Ty Ty
Fig. 10. The base function( zy)e7
Y
Y
X
X
Ty Ty
Fig. 11. The base function( zy)es
Y
Y
= X
— X

Fig. 12. The base functiom,(, z,)eo
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x N X

Tx Ty

Fig. 13. The base functiom( zy)e10

x/<
X
X

Tx Ty

Fig. 14. The base functiom(, zy)e11

Ty Ty
Fig. 15. The base functiom,(, 7,)e1>

Let us consider an adhesive joint between two stékérends with the dimen-
sions:l;, = 5.0 cm,l, = 4.0 cm. The adherend thicknessesgare g, = 0.4 cm
and the adhesive thickness is 0.04 cm. The material constants &e=E, =
2.05x10 N/cn?, v, = v, = 0.281,G, = 4.5x10 N/cnt. The adherends are subjec-
ted to the loadingNig = 4.0 N,My. = -12.0 N-cmN;, = 8.0 N,T,g =-8.0 N,
T, = —4.0 N. The edge stress due to these loading casgwsresented in Fig.
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16. For the loading vectdér= (0,0,t4y,n4,0,0,0m ,0,n ,,0,t))
from the formulae (20.1) - (20.4) one gets

t 4= 9.7561x10 cm,n 4 = 4.8780%x10 cm,m | =-14.6341x10 cnf,
n,=9.7561x10 cm, t,=4.8780x10 cm.

T
i
| My
Y \4
X l y X | Ngp
—_- 1
Ty ly
Adherend 2 Adherend 1
Lol | L P
! T Nig

| [

N BN
* —=
'

Adherend 2 Adherend 1 e
JEEEEEER]

Fig. 16. Adhesive joint subjected to a complex lnad

According to (21) the solution is given by
(tr ) e = tg (@, y)es + N (tx , Ty)ea + ML (0, Ty)es + Npe (T, Ty)ero + L pe (T, Ty)er2
and is presented in Fig. 17.

‘\\\\ Il \\\\\\\\\\\\"ﬁf"ﬂllll

\\‘\&\Q\\\\\\\\\\\\\\\\\% '/::"/III///,,,,,

sl
‘\\\\“\\‘ O %'Zgl i 0[{"’}[%’”’4[1
\~““

0,/' 27 /I[I,IIII/

4
i

S

Stresg Stress
max, = 1.5187 N/crh mgx 0.94237 N/crh

Fig. 17. Stresses in adhesive of a joint undemapdex loading
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9. FINAL REMARKS

Solutions of the Egs. (14.1) - (14.2) for the sh&tagss in the adhesive possess
interesting algebraic properties. One can concludm the formulae (20.1) -
(20.4), that there exists an infinite number of faary loading layouts in a form
of normal forces, moments and shear forces (noessegily in equilibrium)
which lead to the same solution of the boundaryesadroblem (14.1) - (14.2),
(15) - (18). In the set of loadings an equivalenglation can be introduced,
which identifies loading types leading to the sasukition of the boundary va-
lue problem. Therefore, the loading set can be isidmtl into disjoint equiva-
lence classes. One equivalence class consistbaxfudl/alent loading types, i.e.
the ones leading to the same solution. In the seqjoivalence classes a linear
space structure can be introduced and called thdirlg space. Then a linear
isomorphism of the loading space and the spac®lafisns for the boundary
value problem (14.1) - (14.2(15) - (18) can be constructed. For the boundary
loading types consisting of normal forces, momemts shear forces the loading
space and the solution space are 12-dimensionatd{¢here exists a base con-
sisting of 12 base functions in the solution spagdech generate all solutions of
the boundary value problem (14.1) - (14(2%) - (18).

Solutions for stresses in the adhesive are unigdefined by static boundary
conditions.

It is also worth noting the influence of the Poissoratio v on properties of
solutions for such plane stress elements like adigeints. The role of the
coefficient v is emphasized when analyzing problems formulatedsfngle
plane stress elements, where the cases withouPdieson’s ratio are distin-
guished. For instance, the stress state in a selgiaent with a constant thick-
ness loaded on edges only or under a constanweéht does not depend on
the Poisson’s ratio. Generally, when a loadingpigliad on the element surface
only or when the boundary conditions concern disgii@ents, then the solution
depends on the Poisson’s ratio [4, 5, 15]. Thihiéscase of the adhesive joints
analyzed in the present paper, because an adheaente viewed as a plane
stress element loaded on its surface by stressesan adhesive.
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ROWNANIA NAPREZEN W PLASKICH DWUWYMIAROWYCH SPOINACH
KLEJOWYCH

Streszczenie

Przedmiotem pracy jest sformutowanie réwrtla napezen stycznych w ptaskich dwuwymiaro-
wych spoinach wysgpujacych w pokczeniach klejowych. Elementy pokenia maj state grubo-
$ci i sa wykonane materiatow izotropowych. Ksztalt elementd ptaszczynie pohczenia mae
by¢ dowolny. Padczenia klejowe maghy¢ obchzone napgzeniami stycznymi dowolnie rozto-
nymi na powierzchniach elementéw oraz rapniami normalnymi i stycznymi dowolnie rozto-
zonymi na krawdziach elementéw. Sformutowano uktad dwoch rofvn@niczkowych castko-
wych rzdu drugiego, w ktérych niewiadomymi :iapezenia styczne w spoinie. Dla poken
prostokitnych zbudowano zbiér 12 funkcji bazowych, ktéryatipowiednia kombinacja liniowa
jednoznacznie okéta napezenia styczne w spoinie paizenia klejowego obgionego dowolnym
uktadem sit normalnych, momentéw zgigjch i sit poprzecznych

Stowa kluczowe: paktzenie klejowe, modele analityczne, dwuwymiarowaliaa
napezen w spoinie klejowej, izotropia, sgrystas¢ liniowa
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