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Abstract 

The paper considers some results of creating load-carrying composite systems that have 
uprated strength, rigidity and safety, and therefore are called geometrically (self-) 
hardening systems. The optimization mathematic models of structures as discrete 
mechanical systems withstanding dead load, monotonic or low cyclic static and 
kinematic actions are proposed. To find limit parameters of these actions the extreme 
energetic principle is suggested what result in the bilevel mathematic programming 
problem statement. The limit parameters of load actions are found on the first level of 
optimization. On the second level the power of the constant load with equilibrium 
preloading is maximized and/or system cost is minimized. The examples of using the 
proposed methods are presented and geometrically hardening composite steel-concrete 
system are taken into account.  

Keywords: limit analysis, composite steel-concrete structures, geometrically 
hardening system, bilevel optimization  

1. INTRODUCTION  

The problem of preventing failures of load-carrying systems, including building 
constructions and bridges, is closely connected with the analysis of construction 
failure that can be of sudden or gradual nature. The paper considers issues of 
creating load-carrying systems whose failure occurs gradually under one-path 
monotonic or repeatedly variable quasistatic loadings, which enables to prevent 
a catastrophic failure. Due to geometry and topology of certain classes such 
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systems have uprated strength, rigidity and safety, and therefore are called 
geometrically hardening systems (GHS) [1-3]. 
The essential influence of geometrically nonlinear effects on the load carrying 
capacity is well known. This influence, being the result of structure 
configuration variation due to loading, may be both positive and negative (for 
example, in shakedown problems [4]). The investigations of one of the authors 
[5] on creating a new type of structures having uprated load carrying capacity, 
rigidity and reliability have lately appeared. The indicated structural features 
are found as a result of taking into account geometrical nonlinearity. This class 
includes suspension and wire systems with elements mainly in tension, but also 
combined systems with extended compressed elements, systems with special 
reinforcing and beams or plates with restricted longitudinal displacements. 
The great sensitivity of carrying capacity and adaptation to the structure 
geometry and topology parameters was found in [6]. The analogous influence of 
prestressing was proved as a result of experiment by [7] for the elastic strut-
framed column. 
In this paper the problem of the external actions on the structure having uprated 
reliability is formulated on the first level optimization. On the second level 
optimization the other parameters are sought for the next quality of systems. 
In such approach the definition “limit analysis” includes the serviceability limit 
state, namely the conditions constraining excessive deformations. So, the design 
engineer may now simultaneously consider two possible conditions of failure 
[1, 8-10]. 
The mathematical models and methods of limit analysis for the structures are 
stated in this paper. Load-carrying capacity of systems with regard to inelastic 
deformations and large displacements are considered. Material deforming 
diagrams can be non-monotonic and non-smooth [11-14]. The character of 
structures failure is identified by the solution of arising optimization problems. 
The non-uniqueness of problem solutions is investigated as well. 
As formal attributes (class criteria) of geometrically hardening systems are 
adopted the conditions of plastic yielding stability of structures. With some 
extra conditions these criteria may be also applied to elastic systems, which 
have not arrived at the state of limit equilibrium.  
Here is given a set of criteria for plastic yielding stability of structures, 
including for non-smooth and non-convex problems of optimization. 
A similar problem of stabilization of unstable post-buckling behavior of elastic 
thin-walled cylindrical shells was discussed, for example, in [32]. The effect of 
stabilization of such structures is obtained not by changing its geometry (as 
usually), but by additional independent axial tension. 
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As shown in this study, constant load and preloading of structures took a 
positive effect on the behaviour of the systems GHS. Thus we have second level 
optimization of limit analysis problem, which deal with the dead load and cost 
of structure. 
For practical implementation of such systems in the design of building 
structures and bridges we must have a current software package that implements 
a reliable analysis of the geometrically and physically nonlinearity of the 
systems. Here we used the numerical FEA system ABAQUS [15] and 
analytical/symbolic system Wolfram Mathematica [16]. 

2. PROBLEM STATEMENT  

2.1. Governing conditions  
The rod structures are modelled as discrete mechanical systems, having finite 
degree of freedom. They carry loads and kinematic actions (including 
temperatures, support settlements, distortions or dislocations), prestressing and 
dead forces. The loads and actions may be monotonically increasing or quasi-
static cyclic, any dynamic effects are not considered. The material is ideal 
elastic-plastic, hardening or softening, here the deformation diagrams take the 
form of piecewise continuous and non-smooth functions. 
Notations: 
u, F ∈ Rn  - vectors of generalized displacements and external forces  (loads) 
   of discrete system of structure (n - number of degree of its  
   freedom); 
q, e, p, d, S ∈ Rm  - vectors of full, elastic and plastic generalized strains as well as 
  vectors of given distortions and internal forces (m - dimension of 
  internal forces and strain vectors; the total number of braces);  
λ, ϕ, ψ, ξ, K ∈ Ry - vectors of generalized plastic multipliers, functions of yielding and 
  plastic constants for [1:y] yielding regimes (y - number of yielding 
  regimes); 
Fj ∈ Rn - vectors of generalized independed j-th loadings, j ∈ J (J - set of 
  independent actions); 
Tj ∈ Rn - vectors of weight multipliers (fixed displacements), corresponding 
  to j-th loadings Fj, j ∈ J; 
dj, fj, ∈ Rm - the same vectors of j-th distortions and their weight multipliers; 
ΩF, Ωd  - domains (sets) of forces F and distortions d; indices e, r and  p  
  relate to elastic, residual and initial (prestressed) state parameters; 
x - vector of the system geometry; V – vector of the elements stiffness; 
ρ - vector of the parameters of the cost system elements. 



8 Piotr ALAWDIN, Krystyna URBAŃSKA 

 
 

 

2.2. Analysis of GHS systems  
Let us consider the structure under the constant (dead) load Fc and variable 
(live) load Fv, 

F = Fc + Fv.    (2.1) 

where live loads Fv belong to the domain ΩF, 

Fv ∈ ΩF (Fj, j ∈ J),  (2.2)

like as distortions d of structures are varying within the domain Ωd, 

d ∈ Ωd (dj, j ∈ J),    (2.3) 

the sets ΩF and Ωd are specified by characteristics of actions cycles; they may 
have the form of polyhedral with tops, linear depending on vectors of loadings 
Fj and distortions dj, j∈ J, [1]. 
The system state parameters of strain q are divided into elastic and plastic 
(residual) components, the latter are regarded as constant in time t in the state of 
adaptation, as well as given distortions, 

q = e(t) + p +d. (2.4)

The conditions of system state include the geometric and equilibrium equations 

γ(u) = e + p + d, (2.5)

An(u)S = Fc + Fv, (2.6)

nonlinear physical relationship for large deformations 

e = ξ(S), (2.7)

as well as conditions of yielding in the form of inequality 

φ (·) ≤ 0, (2.8)

which are described in [1]. We consider an optional diagram for deforming and 
plastic yielding of materials having L  zones of hardening, softening or ideal 

plasticity; L – a set of l-th zones, l∈L [6, 11]. 
In case of the associated law of yielding, the generalized plastic deformations 
are as follows 

l l
l L

p N
∈

= λ∑  (2.9)

besides the complementary slackness conditions are fulfilled 
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0, 0, .T
ll l Lϕ λ = λ ≥ ∈  (2.10)

(2.11)

If generalized elastic strains are connected with the internal forces by Hooke 
law, we have 

e = DS, (2.12)

where D – m-order block diagonal matrix of elasticity. 
The criterion of yield state stability of plastic mechanism is 

Ψ(u, λ) = 2-1λTBλ – λTCN(γ(u) – d) – uTF + 

+2-1γ(u)TCγ(u) – γ(u)TCd → min 
(2.13)

for some (smooth and convex) function Ψ, where 

B = H + NTCN (2.14)

for 

λ ≥ 0. (2.15)

In the compact form the problem will be as follow 

Ψ(u, λ) → min,     λ ≥ 0. (2.16)

In the case of non-smooth dependences S = χ–(e) (for the systems with 
unilateral of unsafe ties etc.) and also for the non-associated law of yielding, the 
formulation of problem will be 

Ψ(u, λ, S, e) →
, 0

min
λ≥u

, (2.17)

Ψ(u, λ, S, e) = Ψξ(λ) – λT(ϕp(S) – K) + STγ(u) – uTF, (2.18)

γ0(u, S) := – (∂ψ⁄∂S) + γ(u) – e – d = 0, (2.19)

χ0(S, e) := S – χ-€ = 0,    λ ≥ 0, (2.20)

where 

Ψξ(λ) = 
l

T

0

( )ξ β δβ∫ . (2.21)
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Ψξ(λ) = 
l

T

0

( )ξ β δβ∫ . (2.21)

The Eq. (2.13), (2.17) is obtained generally by algorithmic procedure. It is the 
criterion for a class of effective GHS structures proposed. 
When geometrically nonlinear effects are taken into account, it is necessary to 
restrict displacements and/or plastic strains of the system 

u u u− +≤ ≤ , (2.22)

,l l
l L

p N p− +

∈
= λ ≤∑  (2.23)

where u–, u+ ∈ Rn;   p–, p+ ∈ Rm – vectors of low and upper limits of 
corresponding values in the conditions of rigidity Eq. (2.22), (2.23). 

3. PROBLEMS OF FINDING OPTIMUM LIMITS OF 
REPEATEDLY VARIABLE LOADS (FIRST LEVEL) 

The problem of bilevel optimization is written as follows. 
On the first level, at the system adaptation limit state the power of actions 
(independent loadings Fj, for the changing loads Fv, and distortions dj, j∈ J) in a 
cycle must be maximized. 

( ) maxT T
j jFj dj

j J

T F T d
∈

+ →∑ , (3.1)

( ),q u= γ  (3.2)

( ) ,n c vA u S F F= +  (3.3)

,q e p d= + +  (3.4)

–1( ) : ( ),e S S= κ = ζ  (3.5)

,p = ∂ψ ⋅λ  (3.6)

ϕ(S, λ, K) := ϕp(S) – ξ(λ) – K ≤ 0, (3.7)
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λ ≥ 0, (3.8)

ϕT λ = 0, (3.9)

( , ),v F jF F j J∈ Ω ∈  (3.10)

( , ),d jd d j J∈ Ω ∈  (3.11)

u u u− +≤ ≤ , (3.12)

p p− +≤ ∂ψ ⋅λ ≤ , (3.13)

detMk(S) ≥ εs,   k ∈ Ka. (3.14)

The inequalities (3.14) correspond to the earlier conditions (2.17). 
Then, to determine the parameters of the limit actions on the structure, having 
uprated bearing capacity, we propose the following energetic principle: 
Of all the statically admissible residual forces, plastic multipliers and 
corresponding plastic strains, satisfying the conditions of general stability and 
rigidity of the system, the actual ones are for which the power of the actions in 
a cycle is maximum. 
Energetic principle for the large displacements analysis (3.1)-(3.14) is a 
problem of nonlinear mathematical programming. For the second order limit 
analysis the problem is simplified; we have only linear and bilinear conditions 
and functions with the exception of one quadratic inequality. For solving of this 
problem we use methods [17]. We can notice that the solution of shakedown 
problem on condition of stability (2.17) may not exist. Then this problem must 
be solved without these conditions, but it is necessary to consider the obtained 
residual forces as the prestressing forces, which are to be created in the 
structure before its loading [1]. 
The monotonically increasing loading is a particular case of a cyclic one for 
J=1; restriction (2.17) is not necessary now. If geometrical effects only of the 
second order are taking into account, the problem becomes the bilinear 
programming problem [5]. 
Problems of synthesis for such systems are formulated analogous with the 
problems of analysis. The report [2] presents some examples of analysis and 
synthesis of effective carrying structures as space strut-framed systems with 
queen posts inclined to center of strut, arch or suspended two- or multiflanges 
systems, foundations with special reinforcing. Some of these systems were 
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recognized as inventions and were realized in civil engineering [1]. It is shown 
here that, besides geometry and topology, prestressing greatly influences on 
optimal design of the system. 
As noted in [1], “singular” (instantly-movable or instantly-rigid) constructions 
[18], whose prestressing state is stable, are always relative to geometrically 
hardening systems, regardless of the direction of loads acting on them. The 
similar conclusion would hold true both for “tensegrity systems” [19-20] and 
for their combination with geometrically “neutral” or all the more strengthening 
elements.  
The book [1] proposes also some analytical and heuristic methods for creating 
geometrically hardening systems. These methods have been employed to 
analyze existing constructions, their rational strengthening, as well as to design 
new geometrically hardening systems.  

4. PROBLEMS OF FINDING MINIMAL COST AND/OR 
OPTIMUM LIMITS OF PRELOADING (SECOND LEVEL)  

Numerical analysis as following in this study shown, that constant load and 
preloading took a positive effect on the behaviour of the systems GHS. Thus we 
can provide the second level optimization of limit analysis problem, which deal 
with the dead load and/or cost of structure. 
Constant (dead) load on the structure is always present, but sometimes it adds 
another additional preloading providing stabilization of the system. In any case, 
it is recommended to take such constant load with preloading, which is the 
"equilibrium” for the basic mechanism of the failure of the system. The term 
“equilibrium” load is known in the theory of geometrically changed suspension 
and cable-stayed structures [18]; it's a load that does not cause the kinematic 
displacements of such systems. For arbitrary constructions the “equilibrium” 
load does not cause the system's kinematic displacements in the state of limit 
equilibrium. 
Finally, on the second level we minimize system cost C and/or maximize the 
power of the constant load with equilibrium preloading Fc, 

( , , ) minC x V ρ → , (4.1)

maxT
c cT F → . (4.2)

Since preloading increases the mass and cost of systems, we can provide a task 
to minimize it, at the same time using its positive influence. Such a problem is a 
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generalization of a statement of the optimization problem of bearing capacity of 
arbitrary rigid-plastic systems for one-path loading [9]. 
Note, that criteria (4.1) and (4.2) here are taken into account simultaneously, 
with weight multipliers, but it is possible to consider this criteria one by one. 
The solving of the vector (or multiobjective, multicriteria) optimization problem 
was analyzed in many works, e.g. [21-22]. The theory of bilevel optimization at 
present is intensively developing [23-27, 31].  

5. NUMERICAL ANALYSIS OF COMPOSITE GHS SYSTEM  

5.1. Analysis of strut-framed beam 
Calculations were carried out for the rod system, worked in plastic state. All 
calculations have been made by used physically and geometrically nonlinear 
analysis. The numerical solution of problem was found by the finite element 
method (FEM), using program ABAQUS/Standard [15] include nonlinear 
analysis (Nlgeom). Firstly were analysed the strut-framed beam simply 
supported at ends. Composite beam was assembly with steel I-beam (PN-300) 
with height 30 cm and length l = 12 m and concrete plate with cross section c x 
h2 = 1,0 x 0,1 m. (Fig.1d ). Steel beam was connected with bars of steel truss 
and were loaded by concentrated forces F at the two nodes of beam, see Fig. 1a. 
Height of the rod system was h=2 m. Four variants of the grid model were taken 
into analysis, for b = 2 and 3m (Fig. 1a) and also b = 4 and 5m (Fig. 1b, c), for  
the following load cases:  
(1) without preloading: node 3 was loaded only by the varied force up to F3 = 
600 kN while F5 = 0 kN,  
(2) with additional “equilibrium” preloading at node 5 with constant value F5 = 
200 kN and with the same varied force F3. 

 
Fig. 1. Scheme with loading of the rod system: (a) b < l/3; (b) b = l/3; (c) b > l/3  
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The material parameters for plate, beam and truss were taken as follows. For 
material of plate the modulus of elasticity Ec = 30 GPa; Poisson’s coefficient ν 
= 0,2; yield stress σ0

c =10 MPa. For beam elements Es = 210 GPa; Poisson’s 
coefficient ν = 0,33; yield stress σ0

s =235 MPa and for bars 1-2, 2-4 and 4-6 was 
taken stiffness equal EA1 =  210 MN and for the rest of bars: 2-3 and 4-5 was 
taken stiffness EA2 = 21 000 MN. 
The numerical calculations were made for the following material models: ideal 
elastic-plastic for composite beam, and ideal elastic truss elements. 
In the FEM analysis the concrete plate was modeled using Shell elements 
(S4R), the steel beam was modelled using tree-dimensional beam element with 
two nodes (B31), for the bars was used tree-dimensional truss element with two 
nodes (T3D2). 
Full contact of the bottom layer of plate and top of the beam was carried out in 
Abaqus as a continuous contact of type „tie”. Coupling of steel beam with bars 
of steel truss was modeled like MPC Constraint. 
The aim of numerical calculations was to estimate limit load capacity of system 
for different truss cases (Fig.1a, b, c) without (F5 = 0 kN) and with preloading 
(F5 = 200 kN) and observation of behavior the rod system over limit load 
equilibrium. The results of numerical calculations are shown in Figures  
2, 3. 

 
Fig. 2. Load F3 versus displacement v3 diagram for system without preloading (F5=0) 
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The limit load capacity F0 for case without dead load and preloading of node 5 
(F5=0) was estimated for every truss cases on the level 320 kN, see  
Fig. 2.  
Geometrically hardening effect (go up branch of a curve F3-v3 on Fig. 2) was 
observed only for truss with skew posts (b = 2 and 3 m).  
When the limit load capacity was obtained in the cases for b = 4 and 5 m we can 
observe formation larges displacements and then failure of construction. 
Figure 3 presents the relationship between load F3 and the vertical displacement 
v3 for system with loading of node 3 by the force F3 = 600 kN and loading of 
node 5 by the force F5 = 200 kN.  
In this case limit load capacity was estimated on the level 400 kN. For example, 
for truss with b < l/3 increase of load capacity (geometrically hardening effect) 
was about 20%, see Fig. 3. 

  
Fig. 3. Load F3 versus displacement v3 diagram for system (F5>0) 

When the load F3 increases in the construction of this type the first plastic hinge 
was made on the left of node 3, then the second plastic hinge arises on the right 
of node 5, and system is changing in kinematic mechanism, see Fig. 4. 
The dependence of displacement v3 versus load F3 for b = 2 m was made for two 
cases of loading, see Fig. 4. The diagrams show the points (1) and (2) where 
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plastic hinges were created. For the system without preloading the points (1) 
and (2) corresponded with the forces F3= 260 kN and 320 kN. 
However, for the system with dead load and preloading of node 5, the first 
plastic hinge (1) was appeared for F3 = 309 kN, and the second plastic hinge (2) 
for F3 = 420 kN. The lines on the diagrams F3-v3 over plastic hinge (2) go up 
and approach a limit, see Fig. 4. Thus, the dead load and additional preloading 
in node number 5 caused the increase of load capacity and can be expressed as  

( ) ,/ 0*** FFF −  (4.3)

where F0 is limit load capacity when F5 = 0, F**  and F* are loads in node number 
3 in the system with and without preloading for the same displacement v3. In 
this example F0 = 320 kN and for v3 = 15 cm, F** – F*= 91 kN.  

 
 

Fig. 4. Load F3 versus displacement v3 diagram for b = 2 m  

Preloading of construction caused the increase of load capacity about 28%. It is 
an advantage of such geometrically hardening systems.  
This specific quality was confirmed by analytical calculations [1]. The results 
of calculations using system Wolfram Mathematica are shown in Figure 5. For 
the rod system, showed on Fig. 5, every bars of truss had a stiffness EA→∞. 
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Fig. 5. Load F3 versus displacement v3 diagram for systems with  dead load  
(F5 > 0) – more thickness lines and without dead load (F5 = 0) – thin lines 

The obtained numerical and analytical results show that geometrically 
hardening effect and taking into account dead load and preloading (constant or 
variable) is important for the design of this type structures.  

5.2. Analysis of viaduct system 
Another example of this type object can be the viaduct WD-22 (Fig. 6) in grade-
separated interchange „Pyrzyce” on express road S3 [28].  
Load-bearing structure of this viaduct is a system composes with reinforced 
concrete beam reinforced by steel arch, steel braces and concrete construction 
[29, 30].  

 
Fig. 6. View of viaduct WD-22 [29] 
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The numerical calculations of similar system were found by the finite element 
method (FEM), using program ABAQUS/Standard [15] with geometrically and 
physically nonlinear analysis.  
Fig. 7 shows the simplified scheme with loading of viaduct WD-22. Span of 
arch beam was L = 54 m and high H = 11 m. Beam was supported at ends and 
loaded by forces F1 = 600 kN and F2 = 100 kN at the nodes 1, 2.  

 
 
 
 
 
 
 
 

Fig. 7. Simplified scheme and loading of the viaduct WD-22 

Figure 8 presents the relationship between variable load F1 and the vertical 
displacement v1 of 1st node with the constant force F2 on the viaduct.  
In the construction on this type the dead load and additional preloading always 
was caused increase of load capacity. In this example the increase of load 
capacity was on the level 15%.  

 
Fig. 8. Load F1 versus displacement v1 diagram for the viaduct 
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It should be noted that for the systems with composite beams, in which the 
bending stiffness varies with different moment signs (depending on the 
direction of deformation and the presense of a normal tesile force), the effect of 
GHS rigidity will be relatively different than that for the contructions made 
from homogeneous materials [3]. However the increase of load capacity as a 
result of structure geometry change remains just like this. 

6. CONCLUSION 

The paper considers issues of certain classes systems which have uprated 
strength, rigidity and safety, and therefore they are called geometrically (self-) 
hardening systems (GHS). The failure of such systems occurs gradually under 
one-path or repeatedly variable quasistatic loadings. 
The mathematical models and methods of limit analysis for the GHS composite 
structures are also stated in this paper. Load-carrying capacity and shakedown 
of systems with regard to inelastic deformations and large displacements are 
considered. 
As criteria of geometrically hardening systems are adopted the conditions of 
plastic yielding stability of structures. Yet with some extra conditions these 
criteria may be also applied to elastic systems, which have not arrived at the 
state of limit equilibrium. Here is given a set of known and new criteria for 
plastic yielding stability of structures. 
The numerical calculations of GHS systems in this paper show that taking into 
account the equilibrium constant load with preloading cause the increase of load 
capacity up to 15-30%. Additional or existing load (constant or variable) causes 
geometrically hardening effect in these systems. 
The optimization problem is formulated as a bilevel mathematic programming 
one. To find limit parameters of load actions the extreme energetic principle is 
suggested on the first level. On the second level of optimization the system cost 
is minimized and/or power of the constant equilibrium load with preloading is 
maximized. 
Examples of using the proposed methods are given, and analysis of 
geometrically hardening composite system is made.  
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STANY GRANICZNE GEOMETRYCZNIE WZMACNIAJĄCYCH SIĘ 
KONSTRUKCJI ZESPOLONYCH 

S t r e s z c z e n i e  

W pracy przedstawiono sposoby projektowania konstrukcji, które ze względu na swoją 
geometrię oraz topologię posiadają podwyższoną nośność, sztywność i bezpieczeństwo. 
Systemy takie nazwano geometrycznie (samo-) wzmacniającymi się. Zaproponowano 
optymalizacyjne modele matematyczne konstrukcji jako dyskretne systemy mechaniczne 
będące pod obciążeniem stałym, zmiennym monotoniczne lub niskocyklowym, 
statycznym lub kinematycznym.  
Dla znalezienia granicznych parametrów obciążeń wprowadzona została ekstremalna 
zasada energetyczna, przedstawiona jako problem dwupoziomowego programowania 
matematycznego. Graniczne parametry obciążeń szukane są na pierwszym poziomie 
optymalizacji. Na drugim poziomie minimalizowany jest koszt systemu i/lub 
maksymalizowana jest moc stałego równoważącego obciążenia z dociążeniem. 
Ponadto w pracy przeanalizowano numerycznie i analitycznie zachowanie konstrukcji 
geometrycznie wzmacniających się na przykładzie konstrukcji zespolonych stalowo-
betonowych. Pierwszy przykład dotyczy konstrukcji belkowo-prętowej z podciągiem, 
belkę stanowi stalowy dwuteownik połączony z płytą betonową. Analizowano cztery 
przypadki skratownia podciągu wykonanego z prętów stalowych o przekroju kołowym i 
znacznej sztywności słupów. Pokazano znaczący wpływ orientacji słupów podciągu na 
nośność konstrukcji. Drugi przykład numeryczny wykonano dla uproszczonego modelu 
wiaduktu WD-22 znajdującego się na węźle „Pyrzyce” na drodze ekspresowej S3. 
Dla obu przykładów realizowano dwa przypadki obciążania konstrukcji, bez 
uwzgłędnienia i z uwzgłędnieniem stałego równoważącego obciążenia z dociążeniem. 
Obliczenia numeryczne wykonano w środowisku systemu Abaqus/Standard stosując 
analizę geometrycznie nieliniową (Nlgeom). W obliczeniach przyjęto następujące 
modele materiałowe: dla belki żelbetowej - idealnie sprężysto-plastyczny natomiast dla 
prętów stalowych podciągu - sprężysty. Celem analizy była obserwacja zachowania się 
konstrukcji po osiągnięciu obciążenia granicznego dla różnych przypadków skratowania 
oraz oszacowanie nośności granicznej dla konstrukcji bez stałego obciążenia oraz ze 
stałym obciążeniem i dociążeniem. Na podstawie przeprowadzonych obliczeń 
numerycznych i analitycznych stwierdzono, że w różnych konstrukcjach o pewnych 
wymiarach skratowania obserwuje się wzmocnienie geometryczne po osiągnięciu przez 
system nośności granicznej. Uwzględnienie obciążenia stałego równoważącego oraz 
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dodatkowego dociążenia powoduje wzrost nośności granicznej konstrukcji 
geometrycznie wzmacniających się o około 20 %. 

Słowa kluczowe: obciążenia graniczne, konstrukcje zespolone, geometrycznie 
(samo-) wzmacniające się systemy , optymalizacja 
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