] DE GRUYTER
OPEN

G CIVIL AND ENVIRONMENTAL ENGINEERING REPORTS

ISSN 2080-5187 CEER 2015; 16 (1): 05-23
DOI: 10.1515/ceer-2015-0001

LIMIT ANALYSISOF GEOMETRICALLY HARDENING
COMPOSITE STEEL-CONCRETE SYSTEMS

Piotr ALAWDIN?, Krystyna URBAVSKA
University of Zielona Gora, Institute of Buildinghgineering, Poland

Abstract

The paper considers some results of creating laaging composite systems that have
uprated strength, rigidity and safety, and theeefare called geometrically (self-)
hardening systems. The optimization mathematic tsodé¢ structures as discrete
mechanical systems withstanding dead load, monotami low cyclic static and
kinematic actions are proposed. To find limit pagéens of these actions the extreme
energetic principle is suggested what result in bilevel mathematic programming
problem statement. The limit parameters of loadbastare found on the first level of
optimization. On the second level the power of tomstant load with equilibrium
preloading is maximized and/or system cost is migch The examples of using the
proposed methods are presented and geometricaliietiag composite steel-concrete
system are taken into account.

Keywords: limit analysis, composite steel-concrestructures, geometrically
hardening system, bilevel optimization

1. INTRODUCTION

The problem of preventing failures of load-carrygygtems, including building
constructions and bridges, is closely connectel thi¢ analysis of construction
failure that can be of sudden or gradual naturex paper considers issues of
creating load-carrying systems whose failure ocgreglually under one-path
monotonic or repeatedly variable quasistatic logslinvhich enables to prevent
a catastrophic failure. Due to geometry and topplofj certain classes such

! Corresponding author: University of Zielona Goratitute of Building Engineering,
Szafrana st 1, 65-516 Zielona Gora, Poland, e-mpailiawdin@ib.uz.zgora.pl, tel.+48683282322



6 Piotr ALAWDIN, Krystyna URBANSKA

systems have uprated strength, rigidity and safetyl therefore are called
geometrically hardening systems (GHS) [1-3].

The essential influence of geometrically nonlinetiects on the load carrying
capacity is well known. This influence, being thesult of structure
configuration variation due to loading, may be bptsitive and negative (for
example, in shakedown problems [4]). The invesitget of one of the authors
[5] on creating a new type of structures havingatgat load carrying capacity,
rigidity and reliability have lately appeared. Thelicated structural features
are found as a result of taking into account gedoatnonlinearity. This class
includes suspension and wire systems with elenmaaisly in tension, but also
combined systems with extended compressed elemsygems with special
reinforcing and beams or plates with restrictedjiurdinal displacements.

The great sensitivity of carrying capacity and ddapn to the structure
geometry and topology parameters was found inT[bé analogous influence of
prestressing was proved as a result of experimgn?ofor the elastic strut-
framed column.

In this paper the problem of the external actiomsh® structure having uprated
reliability is formulated on the first level optigdtion. On the second level
optimization the other parameters are sought fmntxt quality of systems.

In such approach the definition “limit analysistindes the serviceability limit
state, namely the conditions constraining excessdfermations. So, the design
engineer may now simultaneously consider two péssibnditions of failure
[1, 8-10].

The mathematical models and methods of limit amalf&r the structures are
stated in this paper. Load-carrying capacity ofteays with regard to inelastic
deformations and large displacements are considdvaterial deforming
diagrams can be non-monotonic and non-smooth [11THe character of
structures failure is identified by the solutionasfsing optimization problems.
The non-unigueness of problem solutions is invagtid as well.

As formal attributes (class criteria) of geometticahardening systems are
adopted the conditions of plastic yielding stapildf structures. With some
extra conditions these criteria may be also applee@lastic systems, which
have not arrived at the state of limit equilibrium.

Here is given a set of criteria for plastic yielglirstability of structures,
including for non-smooth and non-convex problemsptfmization.

A similar problem of stabilization of unstable pasickling behavior of elastic
thin-walled cylindrical shells was discussed, faample, in [32]. The effect of
stabilization of such structures is obtained notcbgnging its geometry (as
usually), but by additional independent axial tensi
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As shown in this study, constant load and prelaadih structures took a
positive effect on the behaviour of the systems GHfis we have second level
optimization of limit analysis problem, which deaith the dead load and cost
of structure.

For practical implementation of such systems in tlesign of building
structures and bridges we must have a current aodtpackage that implements
a reliable analysis of the geometrically and phgibic nonlinearity of the
systems. Here we used the numerical FEA system ABAJ15] and
analytical/symbolic system Wolfram Mathematica [16]

2. PROBLEM STATEMENT

2.1. Governing conditions

The rod structures are modelled as discrete mechlasystems, having finite
degree of freedom. They carry loads and kinemattoms (including
temperatures, support settlements, distortiongstoahtions), prestressing and
dead forces. The loads and actions may be monaibniacreasing or quasi-
static cyclic, any dynamic effects are not congderThe material is ideal
elastic-plastic, hardening or softening, here teimation diagrams take the
form of piecewise continuous and non-smooth fumsio

Notations:

uFOR - vectors of generalized displacements and eatdances (loads)
of discrete system of structure-(number of degree of its
freedom);

g,e,p,d, SIR" - vectors of full, elastic and plastic generaliztrains as well as

vectors of given distortions and internal for¢@s dimension of

internal forces and strain vectors; the total benof braces);
Ao, g, & KOR - vectors of generalized plastic multipliers, ftions of yielding and

plastic constants for [1:y] yielding regimegs-(humber of yielding

regimes);

FOR - vectors of generalized independetl loadingsj [0 J (J - set of
independent actions);

TOR - vectors of weight multipliers (fixed displacentn corresponding
toj-th loadingsF;, j O J;

d,f, OR" - the same vectors pth distortions and their weight multipliers;

Qr, Q4

domains (sets) of forc&sanddistortionsd; indicese, r and p
relate to elastic, residual and initial (prestesh state parameters;
X - vector of the system geometky—vector of the elements stiffnes
p - vector of the parameters of the cost systemahésn

)
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2.2. Analysisof GHS systems

Let us consider the structure under the constaedddloadF. and variable
(live) loadF,,

F=F. +F. (2.1)
where live load$, belong to the domaifi,
F,OQe (F,j OJ), (2.2)
like as distortionsl of structures are varying within the dom&lg,
dOQq(d,jOJ), (2.3)

the set)r andQq are specified by characteristics of actions cydlesy may
have the form of polyhedral with tops, linear degiag on vectors of loadings
F; and distortionsl, j //J, [1].

The system state parameters of strqiare divided into elastic and plastic
(residual) components, the latter are regardedmastant in time in the state of
adaptation, as well as given distortions,

g=¢e(t) +p +d. (2.4)
The conditions of system state include the geomatrd equilibrium equations
y(u) =e+p+d, (2.5)
A (WS=F.+F, (2.6)
nonlinear physical relationship for large deforroas
e=§(9, (2.7)
as well as conditions of yielding in the form oéquality
¢ ()=0, (2.8)

which are described in [1]. We consider an optiahagram for deforming and
plastic yielding of materials havin@.| zones of hardening, softening or ideal
plasticity; L — a set of-th zones|[IL [6, 11].

In case of the associated law of yielding, the gaimed plastic deformations
are as follows

p:%:‘ NiA, (2.9)

besides the complementary slackness conditionfuHitked
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OTA =0, A20, I0L. (2.10)
(2.11)

If generalized elastic strains are connected with internal forces by Hooke
law, we have

e=DS, (2.12)

whereD —m-order block diagonal matrix of elasticity.
The criterion of yield state stability of plastieohanism is

P(u, 1) = 22 BL —ATCu(y(u) —d) —u'F +

+2"%(U)"Cy(u) —y(u)'Cd - min (213)
for some (smooth and convex) functinwhere
B=H +N'CN (2.14)
for
A>0. (2.15)
In the compact form the problem will be as follow
Y(u,A) > min, A>0. (2.16)

In the case of non-smooth dependen&s x7(e) (for the systems with
unilateral of unsafe ties etc.) and also for the-associated law of yielding, the
formulation of problem will be

P S~ min, (2.17)

WU, S € =) =1 (0p(S) —K) + Sy(u) —u'F, (2.18)
Yo(U, S = — EWOS) +y(u) —e-d =0, (2.19)
Xo(S € :=S—-x€=0, A>0, (2.20)

where

|
P\ = [E@)TB. (2.21)
0
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|
P\ = [E@)TB. (2.21)
0

The Eq. (2.13), (2.17) is obtained generally byodtgmic procedure. It is the
criterion for a class of effective GHS structuresgmsed.
When geometrically nonlinear effects are taken atoount, it is necessary to
restrict displacements and/or plastic strains efsystem

u <susut, (2.22)

P"=> NA < p* (2.23)
10L
whereu, u" OR, p,p OR"- vectors of low and upper limits of
corresponding values in the conditions of rigidity. (2.22), (2.23).

3. PROBLEMSOF FINDING OPTIMUM LIMITSOF
REPEATEDLY VARIABLE LOADS (FIRST LEVEL)

The problem of bilevel optimization is written asléws.

On the firstlevel, at the system adaptation limit state the growf actions
(independent loadinds, for the changing loads,, and distortionsl;, j//J) in a
cycle must be maximized.

%(TFTJ'FJ' +T59p) ~ max, (3.1)
q=y(u), (3.2)
A(WS= B+ F, (3.3)
g=e+ p+d (3.4)
e=k"Y(9:=q(9, (3.5)
p=0yYIA, (3.6)

(S A K) =99 —&(A) -K =0, (3.7)
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A>0, (3.8)
®"A=0, (3.9)
F,OQe(Fj, jOJ), (3.10)
dUQq(dj, jOJ), (3.11)
u-susut, (3.12)
p-<oplA<pt, (3.13)
detViy(9 =2 &, k K, (3.14)

The inequalities (3.14) correspond to the earlditions (2.17).

Then, to determine the parameters of the limitaastion the structure, having
uprated bearing capacity, we propose the folloveingrgetic principle:

Of all the statically admissible residual forceslagtic multipliers and
corresponding plastic strains, satisfying the caodis of general stability and
rigidity of the system, the actual ones are forchhihe power of the actions in
a cycle is maximum.

Energetic principle for the large displacements lyams (3.1)-(3.14) is a
problem of nonlinear mathematical programming. B second order limit
analysis the problem is simplified; we have onhehlr and bilinear conditions
and functions with the exception of one quadratequality. For solving of this
problem we use methods [17]. We can notice thatstiletion of shakedown
problem on condition of stability (2.17) may noistx Then this problem must
be solved without these conditions, but it is neagsto consider the obtained
residual forces as the prestressing forces, whiehta be created in the
structure before its loading [1].

The monotonically increasing loading is a particutase of a cyclic one for
U1, restriction (2.17) is not necessary now. Ifrgetrical effects only of the
second order are taking into account, the problesnoimes the bilinear
programming problem [5].

Problems of synthesis for such systems are formlanalogous with the
problems of analysis. The report [2] presents sewamples of analysis and
synthesis of effective carrying structures as sp=togt-framed systems with
gueen posts inclined to center of strut, arch epsnded two- or multiflanges
systems, foundations with special reinforcing. Soofiethese systems were
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recognized as inventions and were realized in ergineering [1]. It is shown

here that, besides geometry and topology, presteggeatly influences on

optimal design of the system.

As noted in [1], “singular” (instantly-movable amstantly-rigid) constructions

[18], whose prestressing state is stable, are awalative to geometrically

hardening systems, regardless of the directionoafls acting on them. The
similar conclusion would hold true both for “tensgg systems” [19-20] and

for their combination with geometrically “neutradt all the more strengthening
elements.

The book [1] proposes also some analytical andisteumethods for creating

geometrically hardening systems. These methods Heen employed to

analyze existing constructions, their rational regtening, as well as to design
new geometrically hardening systems.

4. PROBLEMSOF FINDING MINIMAL COST AND/OR
OPTIMUM LIMITS OF PRELOADING (SECOND LEVEL)

Numerical analysis as following in this study showimat constant load and
preloading took a positive effect on the behavioiuthe systems GHS. Thus we
can provide the second level optimization of lianialysis problem, which deal
with the dead load and/or cost of structure.

Constant (dead) load on the structure is alwaysepite but sometimes it adds
another additional preloading providing stabilizatof the system. In any case,
it is recommended to take such constant load witdopding, which is the
"equilibrium” for the basic mechanism of the faduof the system. The term
“equilibrium” load is known in the theory of geomietlly changed suspension
and cable-stayed structures [18]; it's a load tiwas not cause the kinematic
displacements of such systems. For arbitrary coctstns the “equilibrium”
load does not cause the system's kinematic digps in the state of limit
equilibrium.

Finally, on the second level we minimize systemt €dsnd/or maximize the
power of the constant load with equilibrium prelivad-,

C(x,V,p) - min, (4.1)

TJ F. — max. (4.2)

Since preloading increases the mass and cost nsgswe can provide a task
to minimize it, at the same time using its posiiivkuence. Such a problem is a
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generalization of a statement of the optimizatioobfem of bearing capacity of
arbitrary rigid-plastic systems for one-path loayi€].

Note, that criteria (4.1) and (4.2) here are tak#a account simultaneously,
with weight multipliers, but it is possible to cader this criteria one by one.
The solving of the vector (or multiobjective, matiteria) optimization problem
was analyzed in many works, e.g. [21-22]. The thebbilevel optimization at
present is intensively developing [23-27, 31].

5. NUMERICAL ANALYSISOF COMPOSITE GHSSYSTEM

5.1. Analysisof strut-framed beam

Calculations were carried out for the rod systerarked in plastic state. All
calculations have been made by used physically gametrically nonlinear
analysis. The numerical solution of problem wasnfbiloy the finite element
method (FEM), using program ABAQUS/Standard [15tlude nonlinear
analysis (Nlgeom). Firstly were analysed the dramed beam simply
supported at ends. Composite beam was assemblysteh I-beam (PN-300)
with height 30 cm and length= 12 m and concrete plate with cross sectian

h, = 1,0 x 0,1 m. (Fig.1d ). Steel beam was conneuwii¢ldl bars of steel truss
and were loaded by concentrated for€ext the two nodes of beam, see Fig. 1a.
Height of the rod system w&s2 m. Four variants of the grid model were taken
into analysis, fob = 2 and 3m (Fig. 1a) and albc= 4 and 5m (Fig. 1b, c), for
the following load cases:

(1) without preloading: node 3 was loaded only Iy varied force up t&; =
600 kN whileFs= 0 kN,

(2) with additional “equilibrium” preloading at ned with constant valu€s =
200 kN and with the same varied fofee

(a)[—2—< a :I:FS £y (c)
1 2y 729 6
; W{[ w
4_a;mzf, Ll—h4<4—bﬂl> l—bh
* > L c |
b @ i -

hy

o-o
Fig. 1. Scheme with loading of the rod systemb(&)l/3; (b)b =1/3; (c)b > 1/3
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The material parameters for plate, beam and truese waken as follows. For
material of plate the modulus of elasticiy= 30 GPa; Poisson’s coefficient

= 0,2; yield stress,” =10 MPa. For beam elemerts = 210 GPa; Poisson’s
coefficientv = 0,33; yield stress,” =235 MPa and for bars 1-2, 2-4 and 4-6 was
taken stiffness equ&A, = 210 MN and for the rest of bars: 2-3 and 4-5wa
taken stiffnes&€A, = 21 000 MN.

The numerical calculations were made for the follmumaterial models: ideal
elastic-plastic for composite beam, and ideal mldsiss elements.

In the FEM analysis the concrete plate was modelgidg Shell elements
(S4R), the steel beam was modelled using tree-difoeal beam element with
two nodes (B31), for the bars was used tree-dimeasitruss element with two
nodes (T3D2).

Full contact of the bottom layer of plate and tdghe beam was carried out in
Abaqus as a continuous contact of type ,tie”. Coupbf steel beam with bars
of steel truss was modeled like MPC Constraint.

The aim of numerical calculations was to estimadt load capacity of system
for different truss cases (Fig.1a, b, c) withdeg £ 0 kN) and with preloading
(Fs= 200 kN) and observation of behavior the rod swstver limit load
equilibrium. The results of numerical calculatiomse shown in Figures
2, 3.

FikN]
600 / —Db=2m
350 4 == b=3m
300 S ——b=im

....... b=5m

450
/
400 ’

350 /_

300 L

250

200

150

100

50

0

v3[m]
0 0l 02 03 04 05°

Fig. 2. LoadF; versus displacemewmt diagram for system without preloadirfgs£€0)
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The limit load capacitf® for case without dead load and preloading of rode
(Fs=0) was estimated for every truss cases on thel 18260 kN, see
Fig. 2.

Geometrically hardening effect (go up branch ofuave F3zv; on Fig. 2) was
observed only for truss with skew posts (b = 2 amal).

When the limit load capacity was obtained in theesafor b = 4 and 5 m we can
observe formation larges displacements and théurdéadf construction.

Figure 3 presents the relationship between fegahd the vertical displacement
v; for system with loading of node 3 by the fofeg= 600 kN and loading of
node 5 by the forcEs= 200 kN.

In this case limit load capacity was estimatedhanlével 400 kN. For example,
for truss with b < I/3 increase of load capacitgdmetrically hardening effect)
was about 20%, see Fig. 3.

F3i[kN]
600 :
g —b=2m

55 z
330 / . - - = b=3m
500 = b=4m

4

A N N I =5
450 A - b=5m

/

400
350 Ag
300

200

150

100

50

0 v[m]
0 01 02 03 04 05

Fig. 3. LoadF; versus displacemewms diagram for systent>0)

When the loadrsincreases in the construction of this type the fitastic hinge
was made on the left of node 3, then the secorsliplhinge arises on the right
of node 5, and system is changing in kinematic rmeidm, see Fig. 4.

The dependence of displacemenversus loadrsfor b = 2 m was made for two
cases of loading, see Fig. 4. The diagrams showdis (1) and (2) where
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plastic hinges were created. For the system witipoeloading the points (1)
and (2) corresponded with the fordes 260 kN and 320 kN.

However, for the system with dead load and prelmadif node 5, the first
plastic hinge (1) was appeared Far= 309 kN, and the second plastic hinge (2)
for F3 = 420 kN. The lines on the diagrafgVvs; over plastic hinge (2) go up
and approach a limit, see Fig. 4. Thus, the dead énd additional preloading
in node number 5 caused the increase of load dgEaw can be expressed as

(F-F)iEo, (4.3)

whereF? is limit load capacity wheRs=0,F~ andF" are loads in node number
3 in the system with and without preloading for 8ame displacemens. In
this examplé=’= 320 kN and fow; = 15 cm,F —F = 91 kN.

Fi[kN]
600 ;
/ ..... System with dead load
550 .
—— System without dead load
500 y
450 Chr gy g F'-F
400 / T
350 /."' Fs Fs
P c
300 1 ; V3y /3
250 /1 . R
200 //
150 / Formation of plastic hinges
100
50 /
0 5[]

0 005 01 015 02

Fig. 4. LoadF; versus displacemewt diagram folo =2 m

Preloading of construction caused the increaseanf tapacity about 28%. It is
an advantage of such geometrically hardening system

This specific quality was confirmed by analyticalailations [1]. The results
of calculations using system Wolfram Mathematica stiown in Figure 5. For
the rod system, showed on Fig. 5, every bars sbthad a stiffnedsA- .
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T T bh=3m

T STz b=4m

............ b=5m lF3 Fs

.............................. 3 Eiconsh 5
EA=w0 ”’”
<>

va[m]

Fig. 5. LoadF; versus displacememt diagram for systems with dead load
(Fs > 0) — more thickness lines and without dead Igad= 0) — thin lines

The obtained numerical and analytical results shihat geometrically
hardening effect and taking into account dead kadl preloading (constant or
variable) is important for the design of this tygiructures.

5.2. Analysis of viaduct system

Another example of this type object can be thewtadVD-22 (Fig. 6) in grade-
separated interchange ,Pyrzyce” on express rod@&§3
Load-bearing structure of this viaduct is a systwmposes with reinforced

concrete beam reinforced by steel arch, steel brand concrete construction
[29, 30].

Fig. 6.View of viaduct WD-22 [29]
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The numerical calculations of similar system weayend by the finite element
method (FEM), using program ABAQUS/Standard [15fmgeometrically and

physically nonlinear analysis.

Fig. 7 shows the simplified scheme with loadingviEfduct WD-22. Span of

arch beam was L = 54 m and high H = 11 m. Beamsuaported at ends and
loaded by forces; = 600 kNandF, = 100 kN at the nodes 1, 2.

Fig. 7. Simplified scheme and loading of the viadD-22

Figure 8 presents the relationship between variaddd F; and the vertical
displacement; of 1 node with the constant for€ on the viaduct.

In the construction on this type the dead load adfditional preloading always
was caused increase of load capacity. In this elartie increase of load
capacity was on the level 15%.

Fi[kN]

600 gystem with preloading
”

550 =

L -~
500 -
-
450 +—=" //
I /

400 ‘r‘ gystem without preloading
[
350

300

0 vy [m]
0 0.5 1 1.5

Fig. 8.LoadF;versus displacemenmt diagram for the viaduct
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It should be noted that for the systems with coritpdseams, in which the
bending stiffness varies with different moment sigdepending on the
direction of deformation and the presense of a abtasile force), the effect of
GHS rigidity will be relatively different than thdbr the contructions made
from homogeneous materials [3]. However the inaeafsload capacity as a
result of structure geometry change remains jistthis.

6. CONCLUSION

The paper considers issues of certain classesnsystehich have uprated
strength, rigidity and safety, and therefore they @lled geometrically (self-)
hardening systems (GHS). The failure of such systeaturs gradually under
one-path or repeatedly variable quasistatic loagding

The mathematical models and methods of limit afmslgs the GHS composite
structures are also stated in this paper. Loadrogricapacity and shakedown
of systems with regard to inelastic deformationd &arge displacements are
considered.

As criteria of geometrically hardening systems agepted the conditions of
plastic yielding stability of structures. Yet wigbme extra conditions these
criteria may be also applied to elastic systemdgchvhave not arrived at the
state of limit equilibrium. Here is given a set lofown and new criteria for
plastic yielding stability of structures.

The numerical calculations of GHS systems in tlipgr show that taking into
account the equilibrium constant load with prelogdiause the increase of load
capacity up to 15-30%. Additional or existing lo@dnstant or variable) causes
geometrically hardening effect in these systems.

The optimization problem is formulated as a bilewglthematic programming
one. To find limit parameters of load actions th&reme energetic principle is
suggested on the first level. On the second lefveptimization the system cost
is minimized and/or power of the constant equilibriload with preloading is
maximized.

Examples of using the proposed methods are giver analysis of
geometrically hardening composite system is made.

REFERENCES

1. Aliawdin, P. W.:Limit analysis of structures under variable loadi4insk,
Technoprint 2005. (in Russian).

2. Aliawdin, P., Silicka, E Limit analysis and failure of load-carrying
systemgs Selected papers of the 9th International Confaxreon Modern



20 Piotr ALAWDIN, Krystyna URBANSKA

Building Materials, Structures and Techniques, BosMay 2007, Vilnius,
Lithuania Ill (2007) 881-886.

3. Alawdin P., Urbaska K.: Limit analysis of geometrically hardening rod
systems using bilevel programmijngn: 11th International Scientific
Conference on Modern Building Materials, Structuasd Techniques,
Vilnius, Lithuania 2013, 89-98.

4. Maier, G.: A shakedown matrix theory allowing for workhardeniand
second-order geometric effectén: Foundations in plasticity, 1, Ed.
A. Sawczuk, Noordhoff, 1973, 417-433.

5. Alyavdin, P.W.:A new class of effective carrying structures: Aseyand
synthesis Architecture and Civil Engineering of Belarusf5¢1994) 6-10
(in Russian).

6. Alyavdin, P.:Optimization problem for a new class of effectiaerying
structures Proc. of the Second World Congress of Structuaal
Multidisciplinary Optimization (WCSMO-2), 26-30 Ma$997 Zakopane,
Poland, 2, 905-910.

7. Voyevodin, A.A.: Prestressed systems of structures elemesitiojizdat

1989. (in Russian).

Kdnig, J.A.:Shakedown of elastic-plastic structur®8VN, Elsevier1987.

Cyras, A., Borkowski, A., Karkauskas, RTheory and methods of

optimization of rigid-plastic system&echnika, Vilnius 2004.

10. Atkocitnas, J.J.Analysis of elasic-plastic systems at repeated itapd
Publishing house of a science and encyclopediag. {BBRussian).

11. Alyavdin, P., Simbirkin, V.:Analysis of RC elements under monotonic and
cyclic loadings taking into account nonsmooth strssain diagramsProc.
of International Conference on Nonsmooth/nonconweachanics with
applications in engineering, Thessaloniki, Gre2682, 401-408.

12.Gao David Yang, Ogden Ray W.: Stavroulakis Georgids.,.
Nonsmooth/Nonconvex mechanic84odeling, analysis and numerical
methods / Nonconvex optimization and its applicegio50, Kluwer
Academic Publishers, 2001.

13. Gawecki, A., Kruger, P.Slackened systems under variable lqaits
Inelastic Behaviour of Structures under Variableads Z. Mroz et al.
(Eds.). Kluwer Academic Publishers 1995, 399-417.

14.Telega, J.J.On shakedown theorems in the presence of Sigramirditions
and frictions in: Inelastic Behaviour of Structures under ViakgalLoads, Z.
Mréz et al. (Eds.). Kluwer Academic Publishers 198%3-202.

15. ABAQUS User's Manual. 2010. Version 6.10, HibbiKarlson and
Sorensen, Jnc.

© ©



LIMIT ANALYSIS OF GEOMETRICALLY HARDENING COMPOSITE 21
STEEL-CONCRETE SYSTEMS

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cap, F.E.: Mathematical methods in physics and engineeringh wit
MATHEMATICA A CRC Press Company, 2003.

Dem’anov, V.F., Stavroulakis, G.E., Polyakova, L..N.
Panagiotopoulos, P.DQuasidifferentiability and Nonsmooth Modelling in
Mechanics Engineering and Economics / Nonconvex Optimizatod Its
Applications, 10, Kluwer Academic Publishers, 1996.

Kuznetsov, E.N.: Underconstrained Structural Systemdechanical
Engineering Series, XIll, Springer Verlag 1991.

Motro, R.: Tensegrity: Structural Systems for the Futukegan Page,
Limited 2003.

Murakami, H.:Static and dynamic analysis of tensegrity structureart 1.
Nonlinear equations motion. Part 2. Quasi-staticalgsis International
Journal of Solids and Structures, 38 (20), 2009938613; 3615-3629.
Gorokhovik, V.V.:Convex an nonsmooth problems of vector optimization
Navuka i Tekhnika 1990. (in Russian).

Eichfelder, G.: Adaptive scalarization methods in multiobjective
optimization Springer 2008.

Dempe, S.:Foundations of bilevel programmingKluwer Academic
Publishers, 2002.

Demyanov, V., Facchinei, FTwo-level optimization problems and penalty
functions Russian Math. (Izv. VUZ) 47(12) 2003, 46-58. Rassian).
Shimizu, K., Ishizuka, Yo., Bard, J.FNondifferentiable and two-level
mathematical programmindKluwer Academic Publishers 1997.
Strekalovsky, A.S., Orlov, A.V., Malyshev, A.MNumerical solution of a
class of bilevel programming problemSjberian J. Num. Math. / Sib.
Branch of Russ. Acad. of Sci. 13(2) (2010), 201-@dRussian).

Malyshev, A.V., Strekalovsky, A.S&bout interconnection of some prolems
of bilevel and nonlinear optimizatipfiRussian Math. (lzv. VUZ) 4, 2011,
99-103. (in Russian).

Solowczuk, A. (Ed.): Express road S3 on the itiner&zczecin-Gorzow
WIkp., Publishing house Comgraph Anna Jadczuk, &4nz2010. (in
Polish).

Solowczuk, A., Matecki, K.Selected road structures over the S3 express
road, Engineering and Construction, 5 (2011), 284-28'P6lish).

Project documentation of structures over the S3resg road on the
itinerary Szczecin-Gorzéw WIkp., 2011. Contract ieegr office DHV,
Poland, Sp. z.0.0. (in Polish).

Optimization with Multivalued Mappings: Theory, Ajpgmations and
Algorithms / Optimization and Its Applications, I, Dempe S.,
Kalashnikov V. (Eds.), Springer 2006, p. 276.



22 Piotr ALAWDIN, Krystyna URBANSKA

32.Kruzelecki, J., Trybula, D.Optimal axial tension and internal pressure
stabilizing post-buckling path for cylindrical skelunder torsion Journal
of theoretical and applied mechanics, Warsaw, 42030), 645-658.

STANY GRANICZNE GEOMETRYCZNIE WZMACNIAACYCH SE
KONSTRUKCJI ZESPOLONYCH

Streszczenie

W pracy przedstawiono sposoby projektowania koksjruktére ze wzgidu na swaj
geometr¢ oraz topologi posiadaj podwyzszory nasnosé, sztywndé i bezpieczastwo.
Systemy takie nazwano geometrycznie (samo-) wzragcyimi Sk. Zaproponowano
optymalizacyjne modele matematyczne konstrukcjo jdiskretne systemy mechaniczne
bedace pod obecizeniem stalym, zmiennym monotoniczne Ilub niskocykiow
statycznym lub kinematycznym.

Dla znalezienia granicznych parametrow abei wprowadzona zostata ekstremalna
zasada energetyczna, przedstawiona jako problenpaamowego programowania
matematycznego. Graniczne parametry @issi szukane $ na pierwszym poziomie
optymalizacji. Na drugim poziomie minimalizowany sfe koszt systemu i/lub
maksymalizowana jest moc statego réwngweago obcizenia z docizeniem.

Ponadto w pracy przeanalizowano numerycznie i ealiie zachowanie konstrukcji
geometrycznie wzmacnigych sé na przyktadzie konstrukcji zespolonych stalowo-
betonowych. Pierwszy przyktad dotyczy konstrukagldowo-petowej z podcigiem,
belke stanowi stalowy dwuteownik pgizony z ptyt betonowi. Analizowano cztery
przypadki skratownia podgju wykonanego z ptéw stalowych o przekroju kotowym i
znacznej sztywniei stupéw. Pokazano znagzy wplyw orientacji stupéw podagu na
nosnos¢ konstrukeji. Drugi przyktad numeryczny wykonana dlproszczonego modelu
wiaduktu WD-22 znajdacego st na wezle ,Pyrzyce” na drodze ekspresowej S3.

Dla obu przyktadéw realizowano dwa przypadki abania konstrukcji, bez
uwzgkdnienia i z uwzgidnieniem statlego réwnowirgcego obcizenia z docizeniem.
Obliczenia numeryczne wykonano $wodowisku systemu Abaqus/Standard stgsuj
analiz geometrycznie nieliniow (Nlgeom). W obliczeniach przstio nastgpujace
modele materiatowe: dla belkelbetowej - idealnie sprysto-plastyczny natomiast dla
pretéw stalowych podagu - spezysty. Celem analizy byla obserwacja zachowarga si
konstrukcji po osignicciu obchzenia granicznego dla xdych przypadkéw skratowania
oraz oszacowanie Baosci granicznej dla konstrukcji bez stalego abienia oraz ze
stalym obcizeniem i docizeniem. Na podstawie przeprowadzonych oblicze
numerycznych i analitycznych stwierdzonge w r&nych konstrukcjach o pewnych
wymiarach skratowania obserwuje sizmocnienie geometryczne po dagiieciu przez
system nénosci granicznej. Uwzgldnienie obcizenia statego réwnowacego oraz
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dodatkowego dogkenia powoduje wzrost Kposci granicznej konstrukcji
geometrycznie wzmacnigych sé o okoto 20 %.

Stowa kluczowe:  obafenia graniczne, konstrukcje zespolone, geometrgczni
(samo-) wzmacniage st systemy , optymalizacja
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