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Abstract

The subject of the paper is related to problemd$ witmerical errors in the finite
difference method used to solve equations of theorth of elasticity describing 2-
dimensional adhesive joints in the plane streste.sfsdhesive joints are described in
terms of displacements by four elliptic partialféiential equations of the second order
with static and kinematic boundary conditions. tthasive joint is constrained as a
statically determinate body and is loaded by a-emlfilibrated loading, the finite
difference solution is sensitive to kinematic boaryd conditions. Displacements
computed at the constraints are not exactly zelnasTthe solution features a numerical
error as if the adhesive joint was not in equiliori Herein this phenomenon is called
numerical non-equilibriumThe disturbances in displacements and stressbdisbns
can be decreased or eliminated by a correctionaafihg acting on the adhesive joint or
by smoothing of solutionsased on Dirichlet boundary value problem.

Keywords: adhesive joint, equations of linear tlyeof elasticity, finite difference
method, numerical error, smoothing of solutidbsichlet boundary value
problem

1. MODEL OF 2-DIMENSIONAL ADHESIVE JOINT

An adhesive joint is considered as an assemblywaf plane adherends
connected along a common surface by an adhesivis. dssumed that the
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adherends are thin and have constant or moderatalfyng thickness. The

adhesive is thin and may be of constant or modgrageying thickness, too.

The adherend is considered thin when the ratio é@twits thickness and the
dimension along the loading line of action does exteed 0.1. A moderate
variation of thickness is observed when the absolatue of the first derivative

of thickness function does not exceed 0.2. Thicknaeflsa plane element is
measured perpendicularly to the plane 0XY. Thetjtiiickness is measured in
the direction normal to its mid-surface.

The joint is modelled as a plane 2-dimensional elgnparallel to the plane
0XY in a Cartesian set of co-ordinates. Projectiohshe adherends and the
adhesive in the plane 0XY form the same figurerofebitrary shape. Loading
acting on the adhesive joint can be in the forrthefforces parallel to the plane
0XY distributed on the surfaces and edges of adiasré~ig. 1).
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Fig. 1. Layout of an adhesive joint. 1 - adherend 1adherend 2, 3 - adhesive

It is assumed that the flexural and torsional é¢ffeat plane adherends are of
secondary order and can be neglected. Thus, tirbdison of stresses across
the adherend thickness is assumed to be constdriharstresses in adherends
form plane states parallel to the plane 0XY.

An assumed layout of an adhesive joint is preseimelig. 1. Thickness of
adherends is described by functiams= g:(x,y) andg, = g-(X,y), which are
C'-continuous in the sense of partial derivativeswitspect to the variables

y. The functionsg; and g, can have zero values at some regions or in the
vicinity of certain points on adherend edges.

The mid-plane of the adhesive is described by atfons = s(x, y), which is
C'-continuous in the sense of partial derivativeshwitspect to the variables

y. The thicknesg = t(x,y) of the adhesive is larger than zero in the entire
domain and is Econtinuous in the sense of partial derivativeshwéspect to
the variables, .

The adhesive is modelled as an isotropic lineddgte medium with the
material constants: Young's modulls, shear modulu&s and Poisson’s ratio
vs, WhereEg = 2(1 +v5)Gs. The adhesive is subjected to stresges r,(X,Y),



NUMERICAL NON-EQUILIBRIUM AND SMOOTHING OF SOLUTIONS IN THE 103
DIFFERENCE METHOD FOR PLANE 2-DIMENSIONAL ADHESIVE JOINTS

I, = I,(X,y) tangent to its mid-plane and the stregs oy(X,y) normal to it. It is
assumed that the stresses are constant acrosshiesivee thickness. The action
of the shear stressag and 7, in the adhesive leads to a shear strain, which
results in relative displacements of adhesive myerdirections tangent to the
adhesive mid-plane. The stresg results in an axial strain normal to the
adhesive mid-plane. The assumptions regardingrigaafi the adhesive joint by
forces parallel to the plane 0XY and concerningnelatress states in the
adherends parallel to the plane OXY, lead to thecksion that the resultant
from the stresseg, r, andoy is also parallel to the plane 0XY.

Displacements in the adherends 1 and 2 are dedciilyethe functions
u; = w(X,y) andu, = uy(X,y) for the direction X and the functioms = v1(X,y)
and v, = vy(x,y) for the direction Y. The functions;, W, v, v, are cé-
continuous in the sense of partial derivatives \wtgpect to the variablesy.
Loading distributed at external surfaces of theeaghds 1 and 2 are given in
terms of components parallel to the axes X and W are described as
O1x = Gu(X,Y), Oax = O2d(X,y) @anddy = day(X,y), Gy = Gpy(X,Y). Orientations of the
axes X and Y determine a positive sign of the Ingdunctions.

The adherends 1 and 2 are bounded by circumferaatigee surfaces (edges)
perpendicular to the plane. The width of the edgdases is equal to the
adherend thickness. If the width of the edge serfadarger than zero, than the
edge is calledinsharp Stresses acting on unsharp edges of an adhkrerel
denoted byp andpy, (k = 1, 2). It is assumed that the stregsgsindp, are
parallel to the axes X and Y, respectively, andcanmestant across the adherend
thickness. These stresses are treated as a gitemalxloading acting on the
adherends in the plane parallel to 0XY. The widthttee edge surface at a
particular adherend or its fragment can be equaéto. In such a case the edge
is calledsharp Edge loading is not defined at sharp edges.

In the following, the displacement functiong w,, v, v, for the adherends are
considered as unknown quantities and equationseafieory of elasticity in the
plane stress state with boundary conditions ammdtated for them. Knowing
the displacement functions, u,, v;, v, One can determine complete stress and
strain states for adhesive and adherends.

2. GENERAL DISPLACEMENT EQUATIONS FOR ADHESIVE
JOINT AND BOUNDARY CONDITIONS

It is assumed that adherends are made from or{iotneaterials with principal
axes of orthotropy coinciding with the axes X andfya co-ordinate system.
An orthotropic material in the plane stress is désd by five material
constants: two moduli of longitudinal deformati&g,, E., one modulus of
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shear deformatio,,, and two PoiSson’s ratiog,y, vy It is assumed that the
conditionv,, E,, =v,,,E,, holds.
General equations of the theory of elasticity andridary conditions for an

adhesive joint in terms of displacements were @ekriin [18, 19, 20]. They
read:

0%y, 9%y, k) ou v, \d
(alx ale lglx lJ ( Xl + (lglx -1 _lJ& +

0 0x0 oy | ox
5 ay 5 Y Y (1.a)
M, 0% 1% U, —u v, -U,)+ B =0,
(Gy OX} dy = Vi (U —Uy) = Vo, (U = U5) Gy,
0%y, v, o 0% | (0w v )dg,
it Ry it S S ) =S
(ax2 Ty ay? +hy Xy 9 dy Ox ) ox (wb)
0 v, \d % '
+((ﬂly -9 ;1 ayy ayl} - yﬂ“(ul_UZ)_ylu(Ul_UZ)+Gl_:y:0’
O°u, , 0°u, ou, 9% |99,
a + -1 —<= +
( 2X 6x2 ay 182)( a)«-’yJ ( X (/BZX ay 6x
5 Y (1.0
o 99 199 Uy) + Vo (0, ~ Up) + 2 =0,
(ay GXJ ay y2u(u1 2) y2uu( 1 2) szy
aZUZ +q 2 ,B % +% % +
PV ay 2 6>6y dy ox ) ox
d v, 0 % A
u U
+((ﬂ2y -] 6)(2 ay, asz (-?;"'Vz(u(ul Up) + o, (U = U2)+Gz:y =0,
wherek = 1 for the adherend 1 akd: 2 for the adherend 2.
In the equations (1.a) — (1.d) the following naiativas introduced:
E E
(= Oy m , 2)
Gy 1= ViViyx) Gy L= ViViyx)
:ka =1+ akkaxy’ :Bky =1+ akkayx’ (3)
1-sin’ @, sin’ 1-sin® ¢, sin’
Vi J Py B | Py Bug (4a)

Gy Cosp cosp, t o = G, COSp, COSp, t
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. _|1-sirPg,sirf g, L _\1-sif g,sir g, $z (@b
Gy COSH, COSP, Gy COSPy COP, 1
. 2 2 % Cain? P2 2
5 = COS' P, "o e, e, E, LTSI RSy YA By (5.a)
’ 1+(|;S((1+sin2 ¢, tar’ g, + (L+sin® ¢, tar’ ¢y)
G, L2 (2
[ _E(l_sm ¢xsm ¢y)Jtan¢x tan¢y
PR —— | (5.b)
1+ES((1+ sin’ g, Jtar’ g, + (L+sin” g, Jtar? ¢y)
1 . G . .
+sir? g, tarf ¢, + = (L-sir? g, sir’ ¢, Jtar g,
_cog g, E
5U - (5.C)

1+ 0sirt g, Yart g, + Qe sirt g, Yart )

The anglesp, , ¢, are given by the formulag¢ang, =-ds/dx and tang, =—as/dy,

wheres=sky )is the equation of the mid-plane of adhesive sndb-ordinate

system OXYZ.

The equations (1.a (1.d) form a set of four partial differential edgioas of

the second order in terms of displacements desgin adhesive joint between
adherends with varying thickness made from orthmtronaterials and with an
adhesive defined by a curved surface. The unknowmctions are the
displacementsu,, u,, u;, U, for the adherends 1 and 2. It can be shown [18],

that the characteristic form of the main part af gguations set (1.a)(1.d) is
positively definite. Hence the set (1:a)(1.d) is elliptic. Thus, existence and
uniqueness of solution to the set (1.a) — (1.d)hvappropriate boundary
conditions are ensured [5, 7, 9, 10, 13, 15, 22].

Static boundary conditions for adherends displacesnat unsharp edges take
the form:

ou, ou. ou, , du P
a.. —L + =)/ |0+ =L +—2 |[In=—"2
( X oy (Bx—) ay) ( oy ax) Gy, (6.a)
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ou,  dy, ou, oy, _ By
—+— | -)—L+a,— |On= , .
(6y ’ ax] +((ﬁ b Do "My Cuey e
ou ou ou, , du.
(%X —2+(Bx) a;] (63/2 +a—dﬂn=£jx : (6.c)
Xy
ou, . 0U, au2 U, | _ Poy
—+—= |+ -1 +a. [n=—=, .
( ay ax ] ((IBZy ) 2y ay szy (6 d)

wherel andm denote directional cosines of a vector normaldioeaend edges.
Boundary conditions at sharp edges read:

( Muis, J)"’“l]fagxl (g‘y"’a"x Jagl K4 () =0, (7.)

oy ay y
oy, G -
%%}%{% D+, G [T Kl -+ =0, ()

a 2 (92 a 2 |X92 -

ou. ou.

(%w—)f}%{(ﬂzy J)mz Oy a; %g;wzw(w —W)+ (U Uz)"'(;biy_o (7.d)
The boundary conditions (7.a) — (7.d) for sharpesdgre identical with the
equations (1.a) — (1.d), with, = g, =0 substituted.

Boundary conditions at both unsharp and sharp edga®sent equilibrium
conditions, however the character of equilibriundiféerent in these two cases.
The boundary conditions at an unsharp edge exmgsgibrium of internal
stresses in an adherend and external stressesenfing adherend loading.
Thus, the equations (1.a) — (1.d) at an unsharp pdgserve their form and an
unsharp edge belongs to the definition set foraheguations. The equations
(1.a) — (1.d) for a sharp edge degenerate to time f6.a) — (7.d) and, in order to
avoid a singularity, a sharp edge has to be exdldiaean the definition set of
the equations (1.a) — (1.d). The values of disptecgs and their derivatives
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present in the conditions (7.a) — (7.d) have tocbasidered as unilateral
internal limits.

In the theory of differential equations the bourydapnditions representing
equilibrium conditions in terms of derivatives dfet unknown functions are
called natural boundary conditionsin mechanics the terratatic boundary
conditionsis used.

In the displacement formulation static boundaryditions are not sufficient to
obtain a unique solution for the equations (1.4).€). Indeed, if the functions
u((X,y) ando(X,y) are solutions to the equations (1.a) — (1.d)y tloe arbitrary
constantsi, , vg , 8 the functions

U (% y)=8Lly+uy, 0y (xy)+0Ix+u,

(k = 1, 2) are solutions, too. It can be verified dgimple substitution. The
constantsly ando, are interpreted as arbitrary translations of tiileeaive joint
in the directions of the axes X and Y, whilés interpreted as a small rotation
of the adhesive joint about the origin 0 of theotdinate set 0XY.

Thus, it can be concluded that the adhesive jastthree degrees of freedom in
the class of solutions to the equations (1.a) €&){Iwo as a mechanism with
respect to two arbitrary translations along thesaXeand Y and one as a
mechanism with respect to a small rotation abogitottigin 0 of the co-ordinate
set OXY.

In order to ensure uniqueness of a solution tethetions (1.a) — (1.d) one has
to constrain the displacements with respect toethbksee degrees of freedom,
and to obtain a geometrically stable system. Fstaimce:

u(0,0) = 0, v(0,0) = 0, v(X4,0) = 0, where; # 0 (8)
or
u(0,0) = 0, v(0,0) = 0, u(0,yy) = 0, wherey, # 0, (9)

with k = 1 ork = 2. Such a constraint set or any equivalent gnstdtically
determinate and support reactions at the consgraart be uniquely determined.
If an adhesive joint is loaded by a self-equilibrhtset of forces and it is
constrained in a statically determinate way, theppsrt reactions at the
constraints are zero. Stress and strain statdsisrcase do not depend on the
way of constraining. In the case of an adhesivatjmaded by a given self-
equilibrated loading and constrained in a statjcatleterminate way,
displacements for various constraining layout diffey a translation and
rotation as in the case of a rigid body.

The constraint points leading to a geometric stghilf the system have to be
considered as boundary points. An adhesive jointbeaconstrained in a more
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complex way, to make it statically indeterminate inyposing appropriate
constraints on its adherends. In particular one @amstrain some points or
impose displacement for at entire edges of adherei®lch boundary
conditions in the theory of differential equatiomase called asessential

boundary conditionsor Dirichlet boundary conditions.In mechanics the
boundary conditions imposed on displacements dtedckinematic boundary
conditions.

3. FORMULAE EXPRESSING STRESSESIN ADHESIVE AND
ADHERENDS
Having found the functions of displacementsu,, v, v, for the adherends 1

and 2 one can determine stresses in the adhesivéhamdherends. It can be
shown [18, 19, 20], that the adhesive stressegieea by

co sing, sing,, coSp
S S Wkt AT (10.a)
1-sin® ¢, sin“ ¢, 1-sin® ¢, sin“ ¢,
sing, sing,, cosp cosp
t, = -——————— [, +—————Th, (10.b)
1-sin® ¢, sin“ ¢, 1-sin® ¢, sin® ¢,
_( : - 2 2
oy =\tySing, +1, S|n¢y)\/1+tg o« +19%0, , (10.c)
where:
_GS
= =20, (U = Up) + 04, (00 —02)], (11.2)
_GS
y == [0 (U = Up) 46, (00 —02)]. (11.b)

Stresses in the adherends made from an orthotnogierial are expressed by:

© l_kakayx 0X 1_kakayx ay ' .
Vi E u E U
Oy = kyx—ky E@ k 4 ky E@ k. (12.b)

1-ViViyx ox 1- ViV kyx oy
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dy Ox
wherek = 1 for the adherend 1 akd: 2 for the adherend 2.

Tkxy = kay(% + Mj ) (12C)

4. STRESSEQUATIONSFOR ADHESIVE

In the particular case, when the adherends are ptdra constant thickness and
made from orthotropic materials, the displacemeniagéons (1.a) — (1.d) can be
transformed to the form where shear stresses iradinesive are unknowns.
This yields [18, 19, 21]:

2 2 9°
FIPLE L APLA LY T T
ox oy 0x0y tl9G 96
0°r 0%r 0%r G & R
L+(l+a)—L+a X—kzry+—3(—y—i]:0. (13.b)
ox oy 0y tlaG 96
where
1+v
a=1y oo
v=0,501 +vy), (15)
kzzg( !, 1 J:Z(“")Gs( CH ] (16)
t g:lGl ngZ t g:]_Ei gZEZ ’

andv, , v, are Poisson’s ratios for the adherends 1 and 2.
Static boundary conditions for the shear stregs@asdz, take the form

- 2
6rX+V6ry gelV GTX+6ry Dm:(l V)G | Pu _ Pax . (7a)
0X oy 2 (dy 0Ox t E E

B _ 2
LV [T, 0Ty )y 90 O | gy AoVAIG [ Py Py} 7y
2 |y ox ox  dy t E B

The static boundary conditions (17.a) and (17.fjcgito ensure uniqueness of
solutions to the equations (13.a) and (13.b). #ssumed, that an adhesive joint



110 Piotr RAPP

is loaded by a self-equilibrated set of externatés, so the shear stresgeand
7y in the adhesive do not depend on the positioh@faint in the space 0XYZ.
Thus, for the stress equations kinematic boundaoyditions are not
formulated. This fact and the stress equationsaj1313.b) will be used to
verify the solution smoothing method applied tousiohs of the displacement
equations (1.a) — (1.d) by means of the Dirichtatridary value problem.

5. NUMERICAL SOLUTION BY THE FINITE DIFFERENCE
METHOD

Boundary value problems in displacements and iasseés are solved here,

using the classical finite difference method [14.36, 8, 12, 23]. The method is

based on a replacement of differential operatorth wlifference operators

defined in a discrete set of points (nodes), whach intersections of lines

forming a difference mesh in a rectanglg>?22, (Fig. 2).

_ '

_ J1 2 3 m2 ml m

i=1
2

3 'V

ol ol
) AX |

Iy E

Fig. 2. Finite difference mesh on a projection dfi@sive surface

The difference mesh has a regular rectangular siépeside lengths\x and
Ay. There arem nodes in the direction Xj(= 1, 2, ...,m), andn nodes in the
direction Y §{ = 1, 2, ...,n), withn, m> 5. It is assumed that andm are odd
numbers. The unknowns in the finite difference rodttare the values of
displacements functiong; s = U(X;, ¥s) andoys = vk(X, ¥s) for k =1, 2 or the
values of the shear stresses functigns= z(x, ¥s) andz,s = (X, ¥s) in the
adhesive defined in the nodes of the finite diffiee mesh. Derivatives of
functions are approximated with central differences

Displacement equations are formulated for all thdas of the finite difference
mesh, excluding those, where kinematic boundanditions are defined and
those at sharp edges. In the case of nodes wititnived kinematic boundary
conditions, if they are constrained, zero displaeei®m are substituted. For
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nodes on sharp edges static boundary conditionapgiéed. Application of the
central differences to nodes at edges, with theghan of sharp ones, results
in fictitious values of unknown functions for nodedling out of the rectangular
domain 2, x 2l,. Those fictitious values of the unknown functioase
eliminated by means of static boundary conditioms Unsharp edges. In the
case of sharp edges the fictitious nodes beyondetttangular domainl2x 2,
are not introduced. For internal nodes at sharp®dgntral differences are
used for the direction along the edge, while fa tlirection across edges and
for corner nodes unilateral differences spannimgemodes in the direction X
and Y are used. A complete set of linear equatmnghe finite difference
method in terms of displacements consistsrohéquations. The matrix formed
from coefficients of equations is not symmetric asdsingular because the
adhesive joint itself is a mechanism. Non-singtyardf the matrix and
uniqueness of the solution for a system expregsédrins of displacements is
obtained, if kinematic boundary conditions for désgementsu, and v, are
imposed to make the adhesive joint geometricadiplst To this end one has to
constrain at least three degrees of freedom atrampipoints of the finite
difference mesh at one of the adherends. The @nstcan be one- or two-
directional. The points and directions subjectethtoconstraints do not belong
to the definition set of the equations but to trurddary points set. Finite
difference equations are not formulated for thest@ined directions at the
boundary points. The described process of imposinginematic conditions
can be illustrated by an example of a differencalmme= m = 5 presented in
Fig. 3. In the analyzed case it is assumed thapdne 7 in the adherend 2 has
imposed constraints in both directions and the tpaih in the direction Y.
Points of the adherend 1 are not constrained.

The kinematic boundary conditions presented in Eigan be given analytically
as:

u,(7)=0, u,(7)=0, v,({14=0.

The stress equations are formulated for all theeaoaf the finite difference
mesh. In the equations related to the nodes locateboundaries of the
rectangle, fictitious values of unknowns at the np®ilying beyond the
rectangular domainl2x 2, are present. They are eliminated from the set of
equations by means of static boundary conditions.
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AY Ay
1 2 3 4 5 1 2 3 4 5
7 8 9 R 7 8 9
6 A 10 6 10
X X
1 12 13 14 15 A 1 12 13 14 15 A
16 17 18 19 20 1 17 18 19 20
Adherend 2 Adherend 1
L L
21 22 23 24 25 21 22 23 24 25

Fig. 3. Example of kinematic boundary conditions
for the finite difference mesh=m=75

Adherends displacements and stresses as well @as stresses in adhesive
depend on loading and constraining of the adhereAdparticular case is
represented by an adhesive joint, where one adfheignconstrained as
statically determinate and the joint is loaded IseH-equilibrated set of forces.
Then support reactions at the constraints are aegdlependently of the way of
constraining. Thus, in such cases adherends d&pkats depend only on
loading and layout of constraints, while stresseadherends and adhesive — on
loading only.

Numerical solutions to displacements and stressdbsundary value problems
discussed above were obtained using a system gbutemprograms SPOINA
(ADHESIVE). For elliptic equations of the theory @lasticity the finite
difference method is convergent [2, 16]. Test comtions indicate, that the
finite difference meshes from the range<dIn, n <51 yield a relative error of
solution not exceeding 0.5%.

6. NUMERICAL NON-EQUILIBRIUM

In the case of displacement formulation solutions sensitive to kinematic
boundary conditions. It can be observed for adieegiints with one adherend
constrained to be statically determinate (like ig. B) and a self-equilibrated
loading set. In this case support reactions shdaddzero. However, the
solutions to the displacement based finite diffeeerquations usually do not
fulfil this condition. The solutions feature nunwai errors and the joint
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behaves as if it was not in equilibrium. Here tiplsenomenon is called
numerical non-equilibrium

The numerical non-equilibrium is manifested in dibances of solutions in the
form of small global asymmetry and local concembreg at constrained points
of the finite difference mesh.

The numerical error consists of a method errorrandd-up errors. The method
error is due to the discretisation of the adhe$oiet domain by the finite
difference mesh and replacement of derivativeshm équations with finite
differences.

The round-up errors occur during arithmetic compotaand their magnitude
depends on the type of operation and machine foecise. the number of bits
used to store the real number in computer memadhyb({% in single precision,
64 bits in double precision and 80 in extended ipi@t). In the examples
presented in this paper the method error does mfience the form and
magnitude of the numerical non-equilibrium. The gs®n of computations
plays a vital role here.

In order to illustrate the phenomenon of the nuoadrinon-equilibrium an
adhesive joint loaded axially is analyzed. The tjotonsists of two steel
adherends with the following dimensions: lengthO1ém (I, = 5.0 cm),width
8.0 cm(l, = 4.0 cm). The adherend thicknessgis= g, = 0.4 cm, and the
adhesive thickness is= 0.04 cm. The adopted modulus of deformability fo
adhesive i3 = 450000 N/crhand the difference meshx m= 41 x 51 Ax =
Ay = 0.2 cm). The edges= I, of the adherend 1 and= -, of the adherend 2
are subjected to a uniformly distributed normaldiog +¢ = 2.5 N/cm. The
loading resultants acting at the adherend edgesNagye= -N, = 8.0 N.
Kinematic boundary conditions are imposed on theeeehd 2 to constrain the
point (21, 26) in the directions XY and the point (21, 36) in the direction Y,
see Fig. 4.

A complete solution to the problem in the displaeabformulation is given as
functions of adherends displacememts v, , functions of stresses in adherends
Ok » Oky » Ty » (K = 1, 2) and functions of shear stresses in adeegiandz,.
First, solutions obtained using single precisioa analyzed. Figuresabb —
7.131, b present distributions of functiong, vy , ok , Gk , Tkxy » 7x @Ndzy With an
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1 26 36 51 1 26 51
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21

p
[»

21

A A A 4 4

NEERRRNY!

ADHEREND 2 ADHEREND 1

4 41
-g=25 Nlcr? o=2.5N/cn/

Fig. 4. Loading and constraining of adherends iadimesive joint

indication of boundary disturbances to displacemeand stresses due to
constraining of the adherend 2. These disturbaruzes be decreased or
eliminated by a correction of loading acting on fbiat. There are many ways
to correct the loading but any correction will \dt@ the equilibrium of the
original loading system. It was found by a trialagrror approach, that the
disturbances in stresses and displacements distmsucan be decreased by a
correction of the loading acting on the adheremdth the forcedN;; = Nig4 =
—0.0015N, Ny; = Ny, =-0.001725N and T;, = —0.000091 N. These forces in
the form of uniformly distributed stresses alongyesi of the adherend 1 are
presented in Fig. 5. Effects of this decrease studbances in the distributions
of displacements and stresses are shown in Figsléc.

Y  -0.00046875 N/c?

-0.000539062 N/c? -0.000539062 N/c?

A A A A

X

- 0.000042656 N/ch

A A A A A A A KN

Y W

Element 1

4
4

V.V V V X y v vvyvwv\y

- 0.00046875 N/cP

Fig. 5. Correction of loading acting on adherend 1
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Y Y
E % /i X g é% /i X
Displacementi, in adherend 2 Displacement; in adherend 1

a) Distributions of displacements functioasandu,

Y Y
X X
Displacement, in adherend 2 Displacement, in adherend 1
b) Disturbances in distributions of displacemeantandu, along Y. 500-times magnification

y ‘ Y
Y
X
X
placements, in adherend 2 Displacement, in adherend 1

c) Decrease of disturbances in distributions of ldispmentsu; and u, due to correction of
adherend 1 loading presented in Fig. 5.-times magnificatio

Fig. 6. lllustration of numerical non-equilibriurarfdisplacements; andu, in steel-steel
adhesive joint loaded axially and constrained atiogrto Fig. 4. Single precision
computations

Y Y
X X
Displacemenb, in adherend 2 Displacement; in adherend 1

b) Disturbances in distributions of displacemantando, along Y. 500-times magnification
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Displacemenb, in adherend 2 Displacement; in adherend 1

b) Disturbances in distributions of displacemantandv, along Y. 500-times magnification

Y Y
) %
Displacement, in adherend 2 Displacement; in adherend 1

c) Decrease of disturbances in distributions of ldispmentsv; and v, due to correction
adherend 1 loading presented in Fig. 5. 500-timagmnification

Fig. 7. lllustration of numerical non-equilibriurarfdisplacements, ando »in steel-steel
adhesive joint loaded axially and constrained atiogrto Fig. 4. Single precision
computations

The values of displacementisandu, at the axis X in Fig&are:

uy(,,0) = —2.6874-10cm, uy(0,0) = 3.0407-10°cm, uy(l,,0) = 3.3931-10cm,
Ux(—,,0) = —3.3846-10cm, u,(0,0) = 0.@m, uy(l,,0) = 2.6948-1Gcm.

The values of displacementsandv, at the axis Y in Fig& are:
v (0-,) =6832710°cm, y; (00) =1742410"%m, 14 0,) =-6782410"%m,
u,(0-,)=6831210°cm, v, (00) = 00cm, v,(0l,) =-6780810"°cm.

Figure & presents a constraint at the poinj)(= (21, 26) of the adherend 2 in
the direction X, and Fig.b/— a constraint of the adherend 2 at the poin{3 £
(21, 26) andi( j) = (21, 36) in the direction Y, according to thimématic
boundary conditions imposed on the adherend 2 @igl.ocal concentrations
of displacements distributions were formed at tbastrained points. Figures
depict certain asymmetry of displacements along aan Y, too.

By means of an appropriate correction the conctotrand asymmetry can be
decreased (Figsc@&nd T).
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x

Normal stresw,, in adherend 2 Ndrsteesss, in adherend 1

a) Distributions of normal stresses functiong, o, in adherends

Lo, S

Normal stresio,, in adherend 2 Normal stress,, in adherend 1

X

A

b) Disturbances in distributions of normal stressgs o»,. 100-times magnification

<l N
>

Normal stresio,, in adherend 2 Normal stress,, in adherend 1

x

N

¢) Eliminated disturbances in distributions of normal s&ess, , o, due to correction of
adherend 1 loading presented in Fig. 5. 100-times magdiofica

Fig. 8. lllustration of numerical non-equilibriurarfstresses;, , o in steel-steel
adhesive joint loaded axially and constrained atiogrto Fig. 4. Single precision
computations
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Y N
X
X
Normal stresw, in adherend 2 Normal stress;, in adherend 1

a) Distributions of normal stresses functiang, o, in adherends

Normal stres,, in adherend 2 Normal stress,, in adherend 1

b) Disturbances in distributions of normal stressgs o,,. 100-times magnification

Normal stresw, in adherend 2 Normal stress,, in adherend 1

c) Eliminated disturbances in distributions of nolnstressesoy, , 05, due to correction of
adherend 1 loading presented in Fig. 5. 100-timegnification

Fig. 9. lllustration of numerical non-equilibriurarfstresses;, , o, in steel-steel
adhesive joint loaded axially and constrained adiogrto Fig. 4. Single precision
computations

The stress values,, , 5,y at the axis X in Fig.&8i 9a are:

o, (-1,,0) = 00N/cm?, o, (00) = 125N/cm?, gy, (, 0) = 25N/cn?,
a,,(-1,,0 == 035N/cnt, gy, (00) = 00N/cnf, g, (,,0) = 035N/cnt.

The shear stressesy, 7,y in the adherends are antisymmetric.
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Shear stress,,in adherend 2 Shear stress,, in adherend 1

a) Distributions of shear stresses functiopg, 7., in adherends

Y Y
X
X
Shear stress,,in adherend 2 Shear stress,, in adherend 1

b) Disturbances in distributions of shear stresggs z,,,. 5-times magnification

Y Y
X
X
Shear stress,,in adherend 2 Shear stress,, in adherend 1

c) Eliminated disturbances in distributions of sheaesses,, , 7, due to the correction of
adherend 1 loading presented in Fig. 5. 5-timesnifiagtion

Fig. 10. lllustration of numerical non-equilibriuior shear stresses,, , 7., adherends
of steel-steel adhesive joint loaded axially andst@ined according to Fig. 4. Single
precision computations

The extreme value af,, in the adherends in Fig. 4@ TkXyZiO,0148\l/CrT‘F.

It can be concluded from Figsb & 12b that the disturbances of displacements
and stresses in the adherend 2, due to its camsiyaiare transmitted to an
insignificant degree to the adherend 1 — they avdarated in adhesive due to
its flexibility. However, this moderation results liocal concentrations of shear
stress in adhesive, presented in Fid.11
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Shear stresg in adhesive Shear stresg in adhesive

a) Distributions of shear stresses functions in abieer,(+ I, , 0) = 0.785 N/cr
(2 1, £1,) | = 0.199 N/crh

Shear stress in adhesive Shear stregs in adhesive

b) Concentrations of shear stresses in adhesivetih@3 magnification

Shear stresg in adhesive Shear stregs in adhesive

c) Shear stresses in adhesive after eliminationootentrations due to correction of adherend 1
loading presented in Fig. 5. 100-times magnifigatio

Fig. 11. lllustration of numerical non-equilibriuior shear stresses in adhesive
of steel-steel adhesive joint loaded axially andstined according to Fig. 4.
Single precision computations

Numerical errors in the case of extended precisimmuch smaller than for
single precision and computations do not requiseanrections. For instance,
the displacements, andu, along the axes X and Y presented with a magnitude
possible to represent in figures are symmetriculeggand do not exhibit any
disturbances in the form of local concentrationthatconstrained points of the
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adherend 2 (Fig. 2 b). The displacements ando, , which should be zero at
the axis X, do not exhibit any local disturbancesere for 16° -times
magnification and in the scale used in figures barconsidered as null (Fig.
12c).

Y Y
V&( A)(
a) Displacement, in adherend 2 at the axis Y. b) Displacement, in adherend 1 at the axis Y.
10°-times magnification with respect to Fig. 6a 13-times magnification with respect to Fig. 6a

Y

X

c) Displacements, andw, at the axis X. 18-times magnification with respect to Fig. 7a

Fig. 12. Absence of any evident disturbances gfldements in steel-steel adhesive
joint loaded axially and constrained accordingitp B. Extended precision
computations

Distributions of stresseg, andz, do not exhibit any concentrations at the
constrained points for the adherend 2 even at ib®&st magnification (Fig.
13a). Larger magnification does not indicate any camicgions for the stressg,
while some concentrations af become evident for 16times magnification.
Also the signs of stress valugsare different at the concentrations (Figb)L3

Y Y
X %
Shear stresg in adhesive Shear stresg in adhesive

a) Distributions of shear stresses functions in atlleealong the axes X, Y. 100-times
magnification with
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X

b) Concentrations of shear stressgin adhesive at the constrained points in the amtfteR. 18-
times magnification with respect to Fig. 11a

Fig. 13. lllustration of numerical non-equilibriumadhesive of steel-steel adhesive joint
loaded axially and constrained according to Fig=xtended precision computations

7. SOLUTIONSSMOOTHING

The presented method to remove local disturbandedisplacements and
stresses based on a correction of loading actingnasdhesive joint was meant
to illustrate the numerical non-equilibrium onht ik not appropriate for
practical purposes because it involves numeroustitegms of the computations
and is not unique. A more correct method to imprthe situation issolution
smoothing

This method is based on the observation (foundedinktance, by Figs. 6-13
and numerical results), that an influence of Iadiaturbances of displacements
is limited to a small zone on the joint surfaceusuth a constrained point. Thus,
if the constrained point were located at a suffitidistance from the adhesive
edges, than local disturbances at that point whale a negligible influence on
solutions at points lying at the edges of the aidiesurface.

The proposed method of solution smoothing involves subsequent solutions
of different boundary value problems for one adiesjoint. In the first
problem, solution to the equations (1.a) — (1.djilfimg the static boundary
conditions (5.a) — (5.d) or (6.a) — (6.d) and kiatim boundary conditions is
found. The static boundary conditions include logdacting on the adhesive
joint and the kinematic boundary conditions — craietng of one of adherends
ensuring geometric stability of the adhesive joint.

Having solved the first problem one gets the fioni of displacements of
adherends defined at the entire adhesive surfabes,Tthe functions of
displacements at the adhesive edges are known]fttee constrained points
are sufficiently remote from the adhesive edgesn thne can assume, that the
functions of displacements at the adhesive edgesoti@xhibit errors due to
local displacement concentrations. These functi@ss given continuous
functions in the definition domain for the equasqi.a) — (1.d), can be treated
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as boundary functions for the second boundary vahoblem, namely the
Dirichlet boundary problenpl1, 14, 17].

To formulate the Dirichlet boundary problem theatimn Q is introduced for a
closed rectangle coinciding with a projection of aahesive surface on the
plane 0XY of the main set of co-ordinates and idéfined as a Cartesian
product of two closed sections |, Iy] URand F1,,I,] UR, i.e.

Q = [, L Ix[=1y, 1]

The interior ofQ is an open rectangfe defined as a Cartesian product of two
open sectionsl,,Ix) U Rand (-1y,1,) LR, i.e.

Q= (=l ) x =1y, 1)

The sef on the plan®? as connected and open, represents a regRh Fhe
boundaryd Q of the regiorfQ is defined as a difference of s@§) = Q\Q.
The setsdQ andQ are disjoint and the equalilS,_Z =Q0 dQ holds.On the
boundaryd Q of the regior, i.e. for (x, y)0 0, continuous functions

Up (X Y), Up(XY), Up(XY), Uxp(Xy) (18)

are given. They define displacements of adherentleeadhesive surface.

The Dirichlet problem (the internal Dirichlet bowargl value problem) for the
equations (1.a) — (1.d) requires finding the fumesiu,, v, u,, v,, defined and
continuous in the se®, having continuous second partial derivatives rofi

in the regionQ, fulfilling the equations (1.a) — (1.d) i@, and fulfilling the
Dirichlet boundary conditions:

U (% Y)] 5o = Ui (%), (19.a)
U (% Y)| 50 = Ui (X Y) (19.b)
U, (X, Y)|ag = Uy (X Y), (19.c)

U, (X, Y)|aQ =Up(XY) (19.d)
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at the boundary of the regid® i.e. for (x,y)[00Q . The boundary conditions

(18) have the sense of limit transformations frdma interior of the regio2
onto its boundaryd Q . It means, that for an arbitrary poi(%,,y,)J0Q and

for (x,y) O Q the following limits exist:

lim U (Xy)=Up, (X, Ys)

(%y) = (%, ¥b)

lim  0.(XY) =03 (X, Yp) »
(%y) = (%, ¥b)

lim  Uy(XY)=Uy (X, Yp) »
(%y) = (%, ¥b)

lim  02(XY) =05 (X, Yp) -
(%y) = (%, ¥b)

Thus, we have defined uniquely the solutions to faltmwing boundary value

problems:

- to the boundary problem (1.a) — (1.d), (6.a) -dX6or (7.a) — (7.d) in
displacements  with  kinematic boundary conditions naded by
Uss, Ursy Uzs, Uss

- to the Dirichlet boundary problem denoted iy, v, , Uyp , Usp -

These solutions are identical. In order to proyé is sufficient to note, that the
functions given by:

Al =Ug—Up, AU =Ug—Up, AU, =Uyg~Uyp, AU, =Uys—Upyp
fulfil the equations (7.a) with zero Dirichlet badary conditions:

Aul(Xl y)|OQ :O AUl(Xl y)|0.Q = 0 AuZ(Xl y)|0.Q = 0 AUZ(X7 y)|aQ = O (20)
Uniqueness of the solution to the Dirichlet bourydproblem leads to zero
solutions for zero boundary conditions. Hence,

Au, =0, Ay, =0, Au,=0, Auv,=0, (21)
yielding (s, Uis, Uz, Ups ) = (Uyp, Uip, Upp, Unp ) -
The identity of these solutions has purely theoetmeaning. The numerical
solutionsuss, v1s, Uss, vas andup, v1p, Usp, 0op are not identical in reality. The
solutions uis , v1s , Uss , vos feature disturbances in the form of local

concentrations at the constraining points, whike $blutionsu;p, v1p, Uxp , 02
are free of them because the Dirichlet boundaryesgiroblem involves the
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displacement functions for adherends, which, in tkegion Q, fulfil the
equations (1.a) — (1.d) exclusively, without angliidnal conditions.

Thus, the numerical solutionsy , v1p, Uxp, v2p Of the Dirichlet boundary value
problem are the smooothed solutions of the prohiétin static and kinematic
boundary conditions

Hence, for the Dirichlet boundary value problem tlgionQ is the set of
definition of the equations (1.a) — (1.d). The téndifference equations are
formulated for internal nodes of a finite differenmesh only, while for edge
nodes values of displacements of adherends at laesive edge computed in
the first boundary value problem are substituted.

Effects of smoothing of concentrations in the solutshown in Figs. 6-11,
using the solutions to the Dirichlet boundary vajueblem, are presented in
Figs. 14-16.

x
x

Displacementi, in adherend 2 Displacement; in adherend 1
Y
Y
\ \
> X > X
Displacemenb, in adherend 2 Displacement, in adherend 1

Fig. 14. Smoothing of local concentrations in dasgimentsi;, u,, v; andv, shown
in Figs.6b and b using solution to the Dirichlet boundary valuelgem. 500-times
magnification with respect to Figsa@nd &. Single precision computations

Accuracy of a solution to the finite difference pkem formulated in

displacements can be assessed indirectly by a a®opato a solution

considered as exact. One may assume, that the salation is given as the
functions of shear stresses in adhesivandr, obtained from the boundary
value problem expressed in stresses (13.a) — ({3.bp) — (17.b).
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<

/K/j

Normal stress, in adherend 2 Normal stress;, in adherend 1
v Y
X
X
Normal stress,, in adherend Normal stressy, in adherend 1
Y Y
X
X
Shear stress,,in adherend 2 Shear stress,,, in adherend 1

Fig. 15. Smoothing of local concentrations in Sessy , oy , Ty Shown in Figs8b —
10b using solution to the Dirichlet boundary value ldean. 100-times magnification
with respect to Figs.88— 10a. Single precision computations

Y
y ><x

Shear stress in adhesive Shear stresg in adhesive

Y

Fig. 16. Smoothing of local concentrations in stess, andz, shown in Figllb using
solution to the Dirichlet boundary value probler@0%imes magnification with respect
to Fig. 1%. Single precision computations
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Such an assumption is justified because stressufatibns do not involve any
kinematic boundary conditions and the phenomenonnoierical non-
equilibrium does not occur.

Besides, there are two times fewer difference agust than in the
displacement formulation. Thus, solutions for aesdr problem features a
smaller numerical error.

Values of the shear stressg&ndz, in adhesive (in the considered cage= 0)
of the analyzed steel-steel joint loaded axiallyadiitrary nodes of the finite
difference mesh can be calculated from the form(d&ea) — (10.b) basing on
the solutions to the Dirichlet boundary value pewsbl(a smoothed solution to
the problem in displacements) and to the problemmditated in stresses. Some
results obtained with single precision computatiaresgiven in Tables 1 and 2.

Table 1. Values of shear stresses in adhesive [fjlamfFig. 1% from solution to the
Dirichlet boundary value problem, single precision.

i\j 1 26 51
I 8.486827E-1 5.917435E-4 8.493129E-1

! Ty 1.992273E-1 —1.872102E-4 —1.993071E-1
I 7.843243E-1 5.662714E-4 7.855886E-1

21 Ty —2.296725E-5 — 1.467888E-6 —2.127704E-5
I 8.486575E-1 5.865992E-4 8.492196E-1

4 Ty —1.992173E-1 1.629896E-4 1.993295E-1

Table 2. Values of shear stresses in adhesive [{jlanfig. 11, single precision.

i\j 1 26 51

1 Iy 8.489776E-1 5.909367E-4 8.489777E-1
Ty 1.992904E-1 2.414237E-10 —1.992906E-1

21 Iy 7.850467E-1 5.655336E-4 7.850462E-1
Ty — 8.30481E-8 8.998684E-10 1.059868E-7
Ik 8.489764E-1 5.909268E-4 8.489764E-1

“ Iy —1.992903E-1 —1.293227E-10 1.992905E-1

Errors of the solution to the Dirichlet boundaryueaproblem given in Table 1
with respect to the solution of the problem in stes given in Table 2 treated
as the exact solution are presented in Table 3.

Table 3. Errors in % of solution to the Dirichleiundary value problem from Table 1
with respect to the solution of the problem in stes in Table 2, single precision

i\ 1 26 51
L I ~0.0347 0.1365 0.0395
3 -0.0317 - -0.0828
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21 I —0.0920 0.1305 0.0691
I - - -
a1 I —0.0376 —-0.7323 0.0286
Ty 0.0366 - 0.0196

Zero values in Table 3 (as well as Table 6) werethd by

Smoothing eliminates disturbances

G

in solutions he tform of

local

concentrations at internal nodes of the finiteed#hce mesh only. It does not
help to eliminate a solution asymmetry, charadierifor single precision
computations. That asymmetry has a global charanfkrencing the entire
adhesive surface including displacement values tadofior the Dirichlet
boundary value problem. Thus, after smoothing ofaloconcentrations,
asymmetry remains, what is evident for displacemeant Fig. 14 and for
stresses in Tables 1 and 3.
A solution to the Dirichlet boundary value problerhtained using extended
precision features symmetry of the strgsand antisymmetry of the stregsn
adhesive with 13 or 14 digit accuracy (Table 4),levtior the problem in
stresses — with 15 digits accuracy (Table 5). Egjaivce of the solutionsifs ,

v1s, Uss, 029) = (U , 010, Usp , 02p) iN the case of extended precision is fulfilled
with 8 or 9 digits accuracy (Tables 4 and 5). Esr@n %) of the solutions to the
Dirichlet boundary value problem from Table 4 wrgspect to the solution of

the stress problem given in Table 5, are presant&dble 6.

Table 4. Values of shear stresses in adhesive f{jlanfFig. 17 from solution to the
Dirichlet boundary value problem in displacementdended precision

i 1 26 51
| || 84897784910685E-1 5.9094202580289E-4 8.4897788EEDE

7, 1.9929163997762E-1 0 — 1.9929163997763E-1
,, | T| 7.8504803534036E-1 5.6553379686515E-4 7.850480 38

7,|  —3.988088577E-18 — 3.5025806786625E-19  1.769079BHE-17

| 8.4897784910685E-1 5.9094202580288E-4 8.489778&EMDE
T - 19929163997762E-1 0 1.9929163997762E1

Table 5. Values of shear stresses in adhesive [{jlamnfig. 1%. Solution to the
problem in stresses, extended precision

i 1 26 51

| | | 8.48977849068113E-1 5.90942025558641E-4 8.4897 BRAAGBE-1
r,| 1.99291639968777E-1] - 6.61275438283593E:23  — 11BBED68777E-1

,q | T| 7.85048035298519E-1 5.65533796605446E4 7.85048B3ABDE-1
7,| 2.65825758479839E-19  2.56760694084481E-23  — 2.QEAZ3I4121E-19

41| 1| 8.48977849068113E-1 5.90942025558641E4 8.4897 BRAAGBE-1




NUMERICAL NON-EQUILIBRIUM AND SMOOTHING OF SOLUTIONS IN THE 129
DIFFERENCE METHOD FOR PLANE 2-DIMENSIONAL ADHESIVE JOINTS

| 1| —1.99291639968777E-1 - 7.51033902896203E-22  1MBEEDE8777E-1

Table 6. Errors in % of the stresses obtained fitmrDirichlet boundary value problem
in Table 4 with respect to the solution of the peobin stresses in Table 5, extended
precision

i\j 1 26 51

I 0.456-1C° 0.414-10 0.456-10°
1

Iy 0.444-10° - 0.444-10°
01 I 0.533-1C° 0.459-10 0.533-10°

Ty — - _

I 0.456-1C° 0.414-10 0.456-10°
41

Iy 0.444-10° - 0.444-10°

Values in Tables 3 and 6 indicate, that errorstresses yielding from the

solution to the Dirichlet boundary value problemtasbed with extended

precision are about 19imes smaller than for single precision.

Assessment of accuracy of numerical results isestibp and depends on the
goal of computations. For instance, in the scalEigé. & — 11a the smoothed

solutions, both in single and extended precisioan de considered as
satisfactory. If there is a need for more precisaelyses, smoothed solutions
obtained from extended precision are numericallyemd.

8. CONCLUSIONS

This paper addressed a question of numerical ewocsirring in the finite
difference method applied to solve equations of theory of elasticity
describing a two-dimensional adhesive joint in anpl stress state. The
formulation was expressed in displacements by meérmsset of four partial
differential equations of the second order withtistand kinematic boundary
conditions. Static boundary conditions involveddivg applied to the joint,
while the kinematic ones — constraining of adhesen@sulting in a
geometrically stable system.

Solutions to the problem expressed in displacememtding from the finite
difference method, are sensitive to kinematic bampctonditions. It can be
observed when adhesive joint is constrained iratcsily determinate way and
loading is self-equilibrated. Then reactions atstmints should be equal to
zero but the finite difference solution does notetmihis condition accurately.
Thus, the solution is erroneous and the adhesiuehehaves as if it was not in
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an equilibrium state. Here this phenomenon wasedafumerical non-
equilibrium

The numerical non-equilibrium results in a smallyrasetry and local
concentrations at constraining points of adhesimg. The magnitude of local
disturbances in the solutions depends stronglyrecigion of computations.
Numerical examples presented in Section 5 illustrétis phenomenon
sufficiently for the displacement formulation ofettproblem. The numerical
non-equilibrium is observed in all the cases ofemile joints constrained in a
statically determinate way and the joints are uradself-equilibrated loadings.
Disturbances in displacements and, consequently,stiess distributions
resulting from constraining of an adhesive joint t& decreased or eliminated
by a correction of loading. This correction canetakany forms but every type
of such a correction will violate the equilibriurhtbe original system. Such an
approach requires numerous computations and doedead to a unique
solution.Smoothing of solutionis a more appropriate method.

The method of solution smoothing proposed in thépegy is based on an
observation, that the influence of local disturesin displacements is limited
to small zones on an adhesive surface around eamsiy points. Thus, if a
constraining point is sufficiently remote from thdhesive edges, then a local
disturbance in displacements has a negligible etieaisplacements values at
points located at the adhesive edges.

The smoothing method involves two subsequent swistito two different
boundary value problems for the same adhesive.jdinthe first problem
displacements fulfilling static and kinematic boandconditions are found. As
a result displacements functions for adherendsaned and they are defined
on the entire adhesive surface including the degpteents at adhesive edges. If
constraining points are sufficiently remote frone thdhesive edges, then the
functions of displacements for edge points are @feerrors resulting from the
numerical non-equilibrium, as was confirmed by dution of the problem
expressed in stresses, which is independent ofriitie boundary conditions.
The displacement functions as given continuoustfons on the edges of the
definition set of the differential equations canda®mpted as boundary functions
for the second boundary value problem, i.e. thécbliet one. Such an approach
proved to be very efficient numerically, what resurom the stability of the
finite difference method for elliptic differentiaquations.

The difficulties with numerical non-equilibrium amsdlutions smoothing do not
occur, if an adhesive joint is supported in a s#ly indeterminate way or



NUMERICAL NON-EQUILIBRIUM AND SMOOTHING OF SOLUTIONS IN THE 131
DIFFERENCE METHOD FOR PLANE 2-DIMENSIONAL ADHESIVE JOINTS

loading is not self-equilibrated. Then reactionghat supports are non-zero, not
due to any numerical error, but due to equilibrinonditions and kinematic
equivalence of the adhesive joint as an externstftically indeterminate
system. Those solutions are subjected to numegitats but their magnitudes
are negligible, especially in the case of extengtedision computations.

The phenomenon of numerical non-equilibrium and pheposed method of
solutions smoothing, presented in an example oathematical model of two-
dimensional adhesive joints, can be used in mahgroproblems involving
numerical solutions to boundary value problems wifferential equations.
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NIEROWNOWAGA NUMERYCZNA | WYGLADZANIE ROZWIAZAN
W METODZIE RGZNICOWEJ DLA DWUWYMIAROWYCH POtACZEN
KLEJOWYCH

Streszczenie

Przedmiotem pracy as bledy numeryczne metody #nicowej zastosowanej do
rozwiazania réwna teorii spezystaici opisupcych dwuwymiarowe patzenia klejowe
w ptaskim stanie napzenia. Podczenia klejowe opisanes sv przemieszczeniach za
pomoa uktadu czterech eliptycznych réwharézniczkowych czstkowych rzdu
drugiego z warunkami brzegowymi statycznymi i kirméyeznymi. J&i potaczenie
klejowe jest unieruchomione w sposéb statycznie nagzalny i jest obgione
zrownowaonym ukladem obgien, to rozwhzania ré@nicowe @ wrazliwve na
kinematyczne warunki brzegowe. W punktach unierotbaia takiego pakzenia
przemieszczenia nieg dokfadnie réwne zeru. Rozwanie r@nicowe jest obarczone
btedem numerycznym, w wyniku ktérego potenie klejowe zachowujeestak, jakby
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nie bylo w réwnowadze. Zjawisko to w tej pracy ckaese terminemnieréwnowaga
numerycznaZaburzenia rozkladéw przemieszaze napezen mozna zmniejszy lub
usura¢ za pomog korekty obcizen dziatapcych na pajczenie klejowe lub przez
wygtadzenie rozwiazabazujce na zadaniu brzegowym Dirichleta

Stowa kluczowe: paktzenie klejowe, liniowa teoria sgtystasci, metoda rénic
skonczonych, bdd numeryczny, wygtadzanie rozwen, zadanie
brzegowe Dirichleta
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