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independently from each other. Structure, which is adapted to the VRL, is 
satisfying the strength conditions and does not experience a cyclic plastic 
collapse [5,16,18]. Although despite that the structures is at shakedown, there 
may appear such deformations and displacements, which can violate the 
exploitation conditions (serviceability limit state (SLS) requirements) 
[14,17,19,22,30]. Therefore in structural engineering it is important to know not 
only the true internal forces of the structure, which experienced plastic 
deformations, but did not reached the cyclic plastic collapse, but also the true 
deformations and displacements (the analysis problems of the structures) 
[1,2,4,7]. Many works on the theme of analysis and optimization of the 
structures deals with equations and dependencies for total (summarized) internal 
forces and displacements. This is not correct formulation of the problem, 
because the state of the structure before collapse is described by energy 
principles, therefore in the equations and dependencies of the problem there are 
namely residual internal forces and residual displacements [25,28,36]. On the 
other hand in today’s scientific literature one can found, that the formulation of 
the residual stresses and displacements analysis problems are directly based on 
the classical shakedown theorems of Melan and Koiter [9,15,27]. In such case 
the application of mathematical programing is very narrowly adapted - as a tool 
for the solution of extremum problems only. Therefore the formulation of the 
rational solution algorithms for the nonlinear analysis problems of the stresses, 
deformations and displacements of the structures at shakedown, remains 
important in the theory of shakedown of plastic structures [21,24,32]. 

2. DUALITY IN SHAKEDOWN ANALYSIS PROBLEMS 

Mathematical model for calculation problem of residual internal forces r =S x  
of elastic-plastic system, which is loaded with variable repeated load, according 
to the terms of mathematical programing theory can be written as follows: 

find ( )min ,f x%  (1) 

subject to ( ) 0, 1,2, , ,ih i m= =x K   (2) 

 ( ) 0, 1,2, , .ig i ζ≥ =x K  (3) 

The mathematical model of analysis problem for statically admissible residual 
internal forces rS  of the structures at shakedown (1)-(3) is formed according to 

the principle of supplementary deformation energy [18]. Function ( )f x%  

expresses supplementary deformation energy, equations (2) - equilibrium 
equation, and constraints (3) are the yielding conditions. By eliminating the 
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equations (2) from the analysis problem (1)-(3), the following problem is 
obtained: 

find ( )min ,f x  (4) 

subject to ( ) 0, 1,2, , .i iϕ ζ≥ =x K  (5) 

Elimination of the equalities (2) here can be performed using Jordan’s 
rearrangements (from here on the variables are denoted asx ); another approach 
was proposed in [5]. 
From the theory of mathematical programing it is known, that for each extreme 
problem it is possible to form a dual problem [11]. This proves widely known 
proposition of mechanic’s, where every extreme principle for solid body, which 
is formulated by the variables of forces, meets the dual principle, which is 
expressed in the terms of deformations state [18]. Mathematical model of dual 
problem for the problem (4)-(5) can be written as follows: 

find ( ) ( )max ,i i
i

f λ ϕ 
− 

 
∑x x  (6) 

subject to 
( ) ( )

,i
i

i

f ϕ
λ

∂ ∂
+ =

∂ ∂∑
x x

x x
0  (7) 

 0, 1,2, , .i iλ ζ≥ = K  (8) 

Complementary slackness conditions of mathematical programming 

 ( ) 0, 1,2, ,i i iλ ϕ ζ= =x K  (9) 

are included in to the objective function (6). Variables iλ  in holonomic (when 
unloading is ignored) analysis problems of elastic-plastic structures obtains the 
physical meaning of plastic multipliers. 
By changing the sign of the objective function the following problem is 
obtained: 

find ( ) ( )min ,i i
i

f λ ϕ 
− + 
 

∑x x  (10) 

when conditions (7) and (8) are satisfied. This problem expresses the principle 
of complete potential energy minimum for the kinematically admissible residual 
displacements ( )ru λ  [29], (see §4 & §5). Formulations of problems (4)-(5), (6)-
(8) are used in forming dual mathematical models for the analysis problems of 
residual internal forces and deformations (displacements) of structures at 
shakedown. 
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3. PHYSICAL INTERPRETATION OF ROSEN’S OPTIMALITY 
CRITERION 

Problem (4)-(5) for the elastic-plastic structures under variable repeated loads is 
written as convex nonlinear mathematical programming problem: 

find ( ) [ ]1
min ,

2
Tf D

 = ∈ 
 

x x x x L  (11) 

here ( ){ }0  for every  1,2, ,i i mϕ= ≥ =L x x K  admissible variation domain of 

variablesx . In some cases objective function or constraints may be linear. 

Vector ∗x , which satisfies constraints of problem (11) and minimizes an 
objective function is called an optimal solution. Because the function ( ) 0iϕ ≥x  

is convex and matrix [ ]D  (usually it is an elasticity matrix of the structure) is 

positively defined, global minimum of objective function in the domain L  of 
admissible solutions is obtained. 
Rosen’s projective gradients algorithm is one of the convex mathematical 
programming problems solution algorithms. In Rosen’s method the gradient of 
objective function is projected on the edge of the admissible domain [33,34]. 
The vector of solution direction is described by a gradient projection. Vector ∗x  
is optimal solution if satisfies optimality criterion of Rosen’s algorithm: 

[ ] ( ) ( ) ( ) ( ) ( )
1

,
T T

I fϕ ϕ ϕ ϕ
−

∗ ∗ ∗ ∗ ∗          − ∇ ∇ ∇ ∇ ∇ =            
x x x x x 0  (12) 

( ) ( ) ( ) ( )
1

,
T

fϕ ϕ ϕ
−

∗ ∗ ∗ ∗      ∇ ∇ ∇ ∇ ≥       
x x x x 0  (13) 

here ( )f ∗∇ x , ( )ϕ ∗∇ x – gradient of objective function ( )f x  of problem (11) 

and gradient of active constraints ( ) ( )0 1,2, , ,i i m i Iϕ = ≤ ∈x K . According 

to the formula (12) the projection of gradient ( )f ∗∇ x  on the edge of admissible 

domain L is determined. 
For the physical interpretation of optimality criterion the Kuhn-Tucker 
conditions are used [11]. Kuhn-Tucker conditions are related to the optimal 

solution ∗x  of the initial problem (11). For the convex functions Kuhn-Tucker 
conditions are as adequacy criterion for the global solution of the initial 

problem. It states [11]: ∗x  is an optimal solution if exists such scalar multipliers 

( )1,2, ,i i mλ = K , which satisfies the following conditions: 
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 ( ) ( ) ,
T

f ϕ∗ ∗ ∇ − ∇ =
 

x x 0λλλλ  (14) 

 ( ) 0,Tϕ ∗ =xλλλλ  (15) 

 .≥ 0λλλλ  (16) 

In formulae (14)-(16) matrix of all gradients is used, not only of active 
constraints ( ) ( )0 1,2, , ,i i m i Iϕ = ≤ ∈x K , therefore zero values of vector 

≥ 0λλλλ  are determined by using complementary slackness conditions (15),(16). It 
is known, that in Kuhn-Tucker conditions (14)-(16) values of vector λλλλ are 
Lagrange multipliers. By comparing dependencies (12) and (14) can be seen, 
that if optimal solution ∗x  exists, physical meaning of conditions (13) is the 
vector of Lagrange multipliers for the problem (11): 

 ( ) ( ) ( ) ( )
1

,
T

fϕ ϕ ϕ
−

∗ ∗ ∗ ∗      = ∇ ∇ ∇ ∇       
x x x xλλλλ  (17) 

 .≥ 0λλλλ  (18) 

Therefore, by using vectors ∗x  and λλλλ , variables of dual problem are obtained: 

 ( ) [ ]1 ,f D∗ ∗= ∇ =y x x  (19) 

 
( ) ( )2 ,

Tϕ
ϕ

∗
∗

∗

 ∂
  = = ∇
  ∂

 

x
y x

x
λ λλ λλ λλ λ  (20) 

 1 2 ,− =y y 0  (21) 

 ( ) 0,Tϕ ∗ =xλλλλ  (22) 

 .≥ 0λλλλ  (23) 

In theory of mathematical programming conditions (12), by using projective 
matrix  

 [ ] [ ] ( ) ( ) ( ) ( )
1

,
T T

P I ϕ ϕ ϕ ϕ
−

∗ ∗ ∗ ∗        = − ∇ ∇ ∇ ∇         
x x x x  (24) 

are written as follows: 

 [ ] ( ) .P f ∗∇ =x 0  (25) 

In work [10] is shown, that Kuhn-Tucker conditions (14)-(16) in calculations of 
elastic-plastic structures are residual deformations compatibility equations. 
Therefore, Rosen’s optimality criterion (12)-(13) has such meaning. And for the 
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internal forces calculation problem, which is formulated according to 
Castiglian’s principle, the following state is valid: the distribution of true 
residual internal forces rS  complies with satisfied deformation compatibility 
equations. In the case of cyclic-plastic collapse the dependencies of associative 
flow law are included in to deformations compatibility equations [3,5]. 

4. DISCRETIZATION OF THE STRUCTURE 

Discretization of the structure, which geometry, materials and cross-sectional 
parameters are known, in this work is performed using a equilibrium finite 
elements method [12,20,23]. By using this method equilibrium equations are 
written more accurately compared with other types of finite elements. Also more 
accurately are described statically admissible elastic eS  and residual rS   
internal forces of the structure at shakedown. In this work total internal forces 
are denoted as e r= +S S S  and displacements e r= +u u u . 
Let’s say, that the degree of freedom (DOF) of the structure is m , then the 

vectors of global displacements u  and loads F  are ( )1 2, , ,= K

T
mu u uu and 

( )1 2, , ,= K

T
mF F FF  respectively. The vector of internal forces of the element 

( )1,2, , ,k k k Kη= ∈K  with a number of kη  nodal nodes 

( )1,2, , ,kl l Lη= ∈K  is ( )1 2, , , , ,= K K

k

T

k k k k l ηS S S S S . Total number of 

vector’s kS  components is kη . Internal forces ( )kS x  at any point x  of the 

finite element are expressed as nodal points internal forces kS . The 

approximation functions of equilibrium finite element internal forces ( )kS x  are 

as follows: 

 ( ) ( ) ,=   k k kS x N x S  (26) 

( )k  N x  - approximation matrix of the k -th element, kS  - kη -dimensional 

vector of internal forces at element nodes. Usually functions ( )k  N x  are such, 

that structure’s element’s differential equilibrium equations 

 [ ] ( ) ( )A =S x q x  (27) 

are not identically satisfied. Therefore equilibrium of the discrete model are 
ensured for the elements of the structure and for their main nodes [23]. By 
putting expression (26) into equations (27) and performing differentiation (if the 
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load is evenly distributed, ( )k k=q x q ), the algebraic equilibrium equations of 

the finite element are obtained: 

 ( ) , .k k kA k K  = ∈ x S q  (28) 

Here ( ) [ ] ( )k kA A  =     x N x . Separate elements are connected to the system 

by means of equilibrium equations for the main nodes of the elements [23]. 
Considering boundary conditions, the system of m  equilibrium equations of the 
structure is finally written as follows: 

 [ ] [ ]or ,= =∑ k k
k

A AS F S F  (29) 

[ ]A  - equilibrium equation matrix of ( )m n×  order, which is used to find the 

vector of statically admissible residual internal forces rS . Residual internal 

forces rS  are self-equilibrium, i.e. satisfies equilibrium equations: 

 [ ] .rA =S 0  (30) 

The geometrical equations of the structure‘s discrete model are obtained by 
using principle of virtual works. For the individual k -th finite element these 
equations are as follows: 

 [ ] [ ] , .
T

k k kA D k K− = ∈u S 0  (31) 

The elasticity matrix [ ]kD  of the k -th element, in the local coordinates system, 

are calculated by the following formula: 

 [ ] ( ) [ ] ( ) .
k

T

k k k
A

D D dA=       ∫ N x N x  (32) 

Integrating on the surface area kA  of k -th element and taking into account 
boundary conditions, we have the geometrical equations for the whole discrete 
model of the structure: 

 [ ] [ ]− = 0,
T

A Du S  (33) 

[ ]D  - quasidiagonal elasticity matrix of structure‘s elements. Physical meaning 

of vector‘s u  components is determined by the formation order of the 
equilibrium equations (29) and dual interrelations between equilibrium 
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[ ]A =S F  and geometrical [ ] [ ]T
A D− =u S 0  equations. By applying known 

finite elements procedures elastic displacements and elastic internal forces eS  
are easily obtained. 
Variable repeated load ( )tF  is defined by timeless bounds supF  and infF  

( )( )inf supt≤ ≤F F F . For example, variation locus of two forces 1F  and 2F  can 

be illustrated as a tetragon, which apexes are combinations of forces bounds 

vectors components ( ) ( )1, 2, 1, 2,, , ,
T T

inf inf inf sup sup supF F F F= =F F . The set 

of apexes is ( )1,2, , , 2mj J j p p∈ = =K ; i.e., if 2=m  then 4=p . By 

solving residual internal forces and displacements analysis problem of the 
structure at shakedown, vectors supF  and infF  are known, therefor tetragon is 

fixed from changing form. 
Vectors of elastic solution ejS  are linear functions of load variation bounds supF , 

infF  and defines all apexes of elastic internal forces hodograph j J∈ : 

 ( ) [ ] ( ).e t tα=S F  (34) 

Here [ ]α  - an influence matrix of elastic internal forces.  

Nonlinear yielding condition of the elastic-plastic element cross-section 

 ( ) ( )( ) 0e rC f t tϕ = − + ≥S S  (35) 

is suitable for the case when the shakedown process of the structure is 
investigated during time t  (considering every possible loading history ( )tF ). 

The plasticity constant ( )2
0C S=  is related to the dimensions and material of 

the cross-section, e.g. limit internal force 0S . These limit internal forces 

( )0kS k K∈  are considered constant within bounds of k -th finite element. For 

the shakedown state of the structure residual internal forces rS  in each section 
of the structure must correspond to the yielding conditions (35) for each apex j  

of elastic internal forces ( ) [ ] ( )e t tα=S F  hodograph: 

 ( ) 0, .j k j ej rC f j Jϕ = − + ≥ ∈S S  (36) 

Thus yielding conditions are checked at each nodal point l  of the k -th finite 
element: 
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 ( ), , , 0, , , .kl j k kl j ekl j rklC f k K l L j Jϕ = − + ≥ ∈ ∈ ∈S S  (37) 

Yielding conditions of the whole elastic-plastic structure are written as follows: 

 ( ) 0, .j j ej r j J= − + ≥ ∈C f S Sϕϕϕϕ  (38) 

Here ( )1 2, , , , ,
T

kC C C Cη=C K K  - vector of plasticity constants of whole 

structure. 

Statically admissible residual internal forces rS  satisfies equilibrium equations 
(30) and yielding conditions (38). 
Kinematically admissible residual displacements ru of the elastic-plastic 
structure satisfies geometrical equations (33): 

 [ ] [ ] ,= +T
r r pA Du S ΘΘΘΘ  (39) 

( )T

p pkl=Θ ΘΘ ΘΘ ΘΘ Θ – vector of plastic deformations. Components of vector pΘΘΘΘ  are 

calculated according to formula: 

 
( ), , , , , ,, 0,

T

pkl pkl j kl j ekl j rkl kl j kl j kl j
j j

ϕ λ λ ϕ = = ∇ + = ∑ ∑ S SΘ ΘΘ ΘΘ ΘΘ Θ  

, 0, , , .kl j k K l L j Jλ ≥ ∈ ∈ ∈  
(40) 

Here ( ) ( ), ,
, ,

T kl j ekl j rkl
kl j ekl j rkl

rkl

f
ϕ

 ∂ +
   ∇ + =  ∂  

S S
S S

S
 - gradients of yielding 

conditions (36), ,kl jλ  - plastic multipliers. Residual internal forces rS  caused by 

the plastic deformations pΘΘΘΘ  in the structure at shakedown ensures, that during 

load variation new plastic deformations will not appear. Residual deformations 

[ ]r r pD= +SΘ ΘΘ ΘΘ ΘΘ Θ  and residual displacements ru  of the structure at shakedown 

may not be unique: they depends on the particular history of loading ( )tF . 

5. COMMON MODEL OF OPTIMIZATION OF THE 
STRUCTURE AT SHAKEDOWN 

The paper refers the optimal shakedown design problem of the structure at 
shakedown as follows: for given load variation bounds infF , supF , the vector of 
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limit forces 0S  satisfying optimality criterion 0min ,k k
k

L S∑  and the constraints 

of shakedown and stiffness, should be found: 

find 0min ,k k
k

L S∑  (41) 

subject to [ ] ,rA =S 0   (42) 

 ( ) ( )( )0 , 0 ,j j e j r= − + ≥C S f S S S 0ϕϕϕϕ   (43) 

 ( ) ( ) [ ]0 0 ,
T

r p rD A  + − = S S S u 0ΘΘΘΘ   (44) 

 ( ) ( )( )0 , 0 ,
T

p j e j r j
j

 = ∇ + ∑S f S S SΘ λΘ λΘ λΘ λ  (45) 

 ( ) ( )( )0 , 0 0,T
j j e j r
 − + = C S f S S Sλλλλ  (46) 

 1, 2, ,, ,
T

j j j j jζλ λ λ ≥ =  0 Kλ λλ λλ λλ λ  (47) 

 0 0, ,min≥S S  (48) 

 ( ), 0 ,min e j r max≤ + ≤u u S u u   (49) 

 ( ) ( ), 0 , 0, for all ,e j j e j j j Jα β   = = ∈   S S F u S F   (50) 

where 0, , ,r r jS S u λλλλ  are unknowns. Objective function (41) can express 

the distribution of limit internal forces 0S  or directly the volume of the structure 
[3,8,31]. The admissible bounds of displacements, under stiffness conditions 
(49) minu  and maxu , can be determined according to design standards [13]. 
Mathematical model (41)-(50) is a continuous optimization problem. The multi-
extremity of problem (41)-(50) is determined by complementary slackness 
conditions for mathematical programing (46). Problem (41)–(50) has to be 
solved in an iterative manner [3,8,31]. A vector of limit forces of the first 

iteration ( )1
0
∗S  is obtained in the first solution of the problem with the initial data 

(initial elemental flexibility matrix [ ]D ). A new flexibility matrix is formed 

using new forces ( )1
0 .∗S  Then, new influence matrices [ ]α , [ ]β  can be 

calculated along with new elastic forces [ ],e j jα=S F  and displacements 

[ ],e j jβ=u F . Iterations are continued until the difference between two 

consecutive objective function values is as small as desired.  
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6. NUMERICAL EXAMPLE OF 2D FRAME VOLUME 
OPTIMIZATION AT SHAKEDOWN CONDITIONS 

The known geometry four-storey plane (two dimensional) frame structure is 
considered (Fig. 2). Columns of the frame are designed from standard rolled 
HEB type cross-sections, beams of the frame are designed from standard rolled 
IPE type cross sections. Bending stiffness EI and axial stiffness EA of elements 

are known (where 205000=E  - elastic modulus of steel, N/mm2; 1
1

b
yI I a A= =  

- second moment of cross-sectional area, cm4; A  - cross-sectional area, cm2 
(Table 1); 1a  and 1b  are known relation constants, provided in Table 2 [6,35]). 

Limit bending moment 0 = y plM f W  and limiting axial force 0 = yN f A of frame 

members are known (where 253.2=yf  - yield strength of steel, N/mm2, 

3
, 3

b
pl pl yW W a A= =  - plastic section modulus, m3; 3a  and 3b  are known relation 

constants, provided in Table 2 [6,35]), see Fig. 1a. The frame is subjected to 
variable repeated loading, i.e. two concentrated forces ( )1F t  and ( )2F t , varying 

in time, are applied and their variation bounds are ( )10 200.0 kNF t≤ ≤  and 

( )233.3 160.6 kNF t− ≤ ≤ . Optimization problem (41)-(50) (excluding 

conditions (49)) is solved (using MATLAB solver: fmincon): it is determined if 
the frame under given loading experiences shakedown, the residual internal 

forces rS* , which ensures shakedown process, plastic deformations p
*θθθθ  and 

residual displacements ru*  are obtained, as well limit internal forces 0S . 

Table 1. Cross-sectional properties of initial cross-sections 

 2, cmA  1 4
1= , cmb

yI a A  3 3
, 3= , cmb

pl yW a A  

 

HEB 550 254.1 143011.45 5632.43 

IPE 100 10.3 176.85 40.12 

Table 2. Cross-sectional properties relation constants 

Name of I-shape 
yI  ,pl yW  

1a  1b  3a  3b  

HEB 550-1000 0.0010 3.3910 0.0402 2.1399 
IPE 0.7885 2.3210 0.8411 1.6572 
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In case of standard steel rolled I
the i -th cross-section read:
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Graphical interpretation of yielding conditions (51) is shown in Fig 1.

Fig. 1 Graphical interpretation of linearized yielding conditions of I

In this work as the main limit internal force the limit bending moment 
chosen. Therefore the relations between limit bending moment and limit axial 
force of the cross-sections are expressed as eccentricities 
the elements under tension they read:
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Graphical interpretation of yielding conditions (51) is shown in Fig 1. 

Fig. 1 Graphical interpretation of linearized yielding conditions of I-shape 
cross-section (a); load variation locus (b) 

In this work as the main limit internal force the limit bending moment 
chosen. Therefore the relations between limit bending moment and limit axial 

sections are expressed as eccentricities c+  and c− [26,35]
the elements under tension they read: 
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Here cr cr yN A Aσ χσ= = −  limit/critical axial internal force (the design buckling 

resistance of a member under compression). χ −  reduction coefficient which 

depends on the non-dimensional slenderness λ  of a column [13,26,37]. 
In this paper the lower bound of constructional requirements 0,minS  (48) is 

compatible with the minimum value of limit bending moment 0,
min

crM . Due to 

requirements of limit slenderness 120limλ =  [13,37], then the minimum value of 
limit bending moment read [26,31]: 

 

3

1
2 1

0, 3 2
1

.

b

b
min b

cr y

lim

l
M a

a
σ

λ

− 
=  

 
 (54) 

The buckling length bl  for the columns were determined according to 
requirements as established by national Lithuanian structural requirements 
(STR) [37]. No structural requirements of minimum slenderness of beams have 
been considered. 
Calculation scheme of the structure is shown in a Figure 2. 

 
Fig 2. Calculation scheme of the frame 

Discrete model of the structure consist of 16 finite elements, 14 nodes, each 
element has a section at each end, and therefore total number of computational 
sections is 32. Each element has a bending moment acting at each section and an 
axial internal force (one per element), therefore total number of internal forces 
are 48. Degree of freedom (DOF) is 36. 
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Table 3. Possible loading combinations 

The wind load is from the left The wind load is from the right 

Comb. I: 1, 2,sup supF F+   Comb. II: 1, 2,sup infF F+  

  

Comb. III: 1, 2,inf supF F+  Comb. IV: 1, 2,inf infF F+  

  

The optimum design was obtained after 30 iterations (see Table 4, Fig. 3). The 
optimal cross-section areas of frame members were chosen according to the 
limit moments distribution (see Table 4). The minimal volume of such structure 
under given loads, at shakedown is 31.5161 m .optV =  

Maximal horizontal linear total displacement located at the top beam is 

, 0.1056 0.0444 0.15 m.hor hor hor
max e max ru u u + == + =  

2,1.0 infF  

  

2,0.4 infF  

2,0.1 infF  

2,1.3 infF  

2,1.0 infF

 
2,0.7 infF

 

2,0.7 infF  

2,0.4 infF

 

2,1.0 supF  

2,0.8 supF  

2,0.6 supF  

2,0.4 supF  

2,0.6 supF  

2,0.4 supF

  
2,0.2 supF  

2,0 supF  

2,1.0 infF  

2,0.7 infF  

 2,0.4 infF  

2,0.1 infF  

 2,1.3 infF  

 2,1.0 infF  

2,0.7 infF

 
2,0.4 infF  

1,0.5 supF  

1,1.0 supF  

1,1.0 supF  

1,1.0 supF  

2,1.0 supF   

 2,0.8 supF   

 2,0.6 supF   

 2,0.4 supF   

 2,0.6 supF  

2,0.4 supF

  
2,0.2 supF

  
 2,0 supF  

 1,0.5 supF  

1,1.0 supF  

1,1.0 supF  

 1,1.0 supF  
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Table 4. The optimum volume of 4-storey steel frame solution convergence per 
iterations 

Iter. 
No. 

Volume, m3 
01,  kNmM  02,  kNmM  2

1,  cmA  2
2,  cmA  

0 0.8708 64105.0608 9.4273 254.1 10.3 
1 1.9385 3815.2648 463.3528 416.7315 108.0309 
2 1.5864 1076.4244 811.1802 230.7010 151.4625 
3 1.3227 1006.4545 466.2454 223.5676 108.4374 
… … … … … … 
28 1.5032 1363.6641 560.5426 257.6638 121.1852 
29 1.5107 1401.2863 556.4239 260.9617 120.6471 
30 1.5161 1404.6600 562.5669 261.2552 121.4491 

Optimal cross-sections  
HEB 600 IPE 550 

270.0 134.0 

Convergence of structure’s volume ( )3m  per iteration is shown in graph bellow 

(see Fig. 3).  

 
Fig. 3. Convergence of structure’s volume (m3) per iterations 

7. CONCLUSIONS 

1. Static (lower bound) shakedown theorem enables to create an optimization 
problems using equilibrium finite elements. 

2. The admissible stress-strain state of a structure at shakedown is described by 
Euler-Lagrange equations for the plastic state. 

3. Optimization problem of the structure at shakedown conditions is a non-
convex mathematical programming problem. 
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4. Numerical example showed, that mathematical model of optimization 
problem could be updated with a constraints of local and global stability of 
structures elements (e.g. constraints for limit slenderness according to EC3 
serviceability limit state (SLS) requirements). 
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OPTYMALIZACJA KONSTRUKCJI W STANIE PRZYSTOSOWANIA  
A KRYTERIUM OPTYMALNOŚCI ROSENA  

S t r e s z c z e n i e  

W pracy przedstawiono problemy zastosowania ekstremalnych zasad energetycznych i 
nieliniowego programowania matematycznego w teorii przystosowania konstrukcji. Za 
pomocą zasad energetycznych, które opisują rzeczywiste stany naprężenia-odkształcenia 
konstrukcji, tworzone są dualne modele matematyczne analizowanych problemów 
(sformułowania statyczne i kinematyczne). Pokazano jak na podstawie wyżej 
wymienionych modeli matematycznych formułowany jest ogólny model matematyczny 
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optymalizacji konstrukcji przy uwzględnieniu ograniczeń w postaci stanów granicznych 
nośności/bezpieczeństwa i użytkowalności. Analizowane są możliwości rozwiązania 
problemu optymalizacji w kontekście fizycznej interpretacji kryterium optymalności 
algorytmu Rosena. 

Słowa kluczowe: przystosowanie, ekstremalne zasady energetyczne, projektowanie 
optymalne, programowanie matematyczne, kryterium 
optymalności Rosena 
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