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Abstract

Paper focuses on the problems of application akex¢ energy principles and nonlin
mathematical programing in the theory of structiglahkedown. By means of enel
principles, which descrils the true stresstrain state conditions of the structure,
dual mathematical models of analysis problems amndd (static and kinemal
formulations). It is shown how common mathematicabdel of the structure
optimization at shakedown with safeand serviceability constraints (according to
ultimate limit state (ULS) and serviceability lingtate (SLS) requirements) on the bi
of previously mentioned mathematical models is fim The possibilities ¢
optimization problem solution in the ctext of physical interpretation of optimali
criterion of Rosen's algorithm are analy:

Keywords: shakedown, extreme energy principles, optimal desigmathematice
programing, Rosen’s optimality criteri

1. GENERAL NOTES

The ideally elasti@lastic systm is considered, which configuration &
positions of external loads are known. Variableesgpd loading (VRL- the
system of loads, where each of these loads or grofiphese loads may va
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independently from each other. Structure, whichadapted to the VRL, is
satisfying the strength conditions and does noted&pce a cyclic plastic
collapse [5,16,18]. Although despite that the dstres is at shakedown, there
may appear such deformations and displacementsgchwban violate the
exploitation conditions (serviceability limit stat§SLS) requirements)
[14,17,19,22,30]. Therefore in structural enginagii is important to know not
only the true internal forces of the structure, abhiexperienced plastic
deformations, but did not reached the cyclic ptastillapse, but also the true
deformations and displacements (the analysis pmubl®f the structures)
[1,2,4,7]. Many works on the theme of analysis aymimization of the
structures deals with equations and dependenaigstéd (summarized) internal
forces and displacements. This is not correct ftatian of the problem,
because the state of the structure before collapsdescribed by energy
principles, therefore in the equations and deperidsrof the problem there are
namely residual internal forces and residual dispieents [25,28,36]. On the
other hand in today’s scientific literature one ¢amnd, that the formulation of
the residual stresses and displacements analystideprs are directly based on
the classical shakedown theorems of Melan and Kf@td5,27]. In such case
the application of mathematical programing is veayrowly adapted - as a tool
for the solution of extremum problems only. Therefthe formulation of the
rational solution algorithms for the nonlinear s& problems of the stresses,
deformations and displacements of the structuresshatkedown, remains
important in the theory of shakedown of plasticstures [21,24,32].

2. DUALITY IN SHAKEDOWN ANALYSIS PROBLEMS

Mathematical model for calculation problem of resitlinternal forcesS, = x

of elastic-plastic system, which is loaded withiahle repeated load, according
to the terms of mathematical programing theorylwamritten as follows:

find min  f(x), (1)
subject to h(x)=0, i=12,..m, (2)
g(x)z0, i=12,./. (3)

The mathematical model of analysis problem foricaly admissible residual
internal forcesS, of the structures at shakedown (1)-(3) is formeebeding to

the principle of supplementary deformation enerdy][ Function f(x)

expresses supplementary deformation energy, eqgat{@) - equilibrium
equation, and constraints (3) are the yielding @@mr. By eliminating the
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equations (2) from the analysis problem (1)-(3) tiollowing problem is
obtained:

find min  f(x), 4)
subject to ¢ (x)=0, i=12,.¢ (5)

Elimination of the equalities (2) here can be peried using Jordan’'s
rearrangements (from here on the variables aretelgrasx ); another approach
was proposed in [5].

From the theory of mathematical programing it ieWwn, that for each extreme
problem it is possible to form a dual problem [1This proves widely known

proposition of mechanic’s, where every extremegpie for solid body, which

is formulated by the variables of forces, meets dial principle, which is

expressed in the terms of deformations state [¥8thematical model of dual
problem for the problem (4)-(5) can be written alfofvs:

find max {f (4)-Z¢ (x)}, (©)

_ of (x) 04, (x) _
subject to ™ +Zi:)li ™ =0, (7
A20, i=12,.7 ®)

Complementary slackness conditions of mathemapicagramming
A¢(x)=0, i=12,.¢ (9)

are included in to the objective function (6). \&nles 4 in holonomic (when

unloading is ignored) analysis problems of elagtastic structures obtains the
physical meaning of plastic multipliers.

By changing the sign of the objective function tfalowing problem is
obtained:

find min {—f (><)+iz/1i¢i (x)}, (10)

when conditions (7) and (8) are satisfied. Thisbpgm expresses the principle
of complete potential energy minimum for the kinéioaly admissible residual

displacementsy, (1) [29], (see84 & 85). Formulations of problems (4)-(5), (6)-
(8) are used in forming dual mathematical modetsttie analysis problems of
residual internal forces and deformations (displeents) of structures at
shakedown.
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3. PHYSICAL INTERPRETATION OF ROSEN’S OPTIMALITY
CRITERION

Problem (4)-(5) for the elastic-plastic structunesler variable repeated loads is
written as convex nonlinear mathematical prograngnpiroblem:

find min {f(x)zéxT[D]x |xDL}, (11)

here L :{x| #,(x)=0 foreveryi= 1,2,. m} admissible variation domain of

variablesx . In some cases objective function or constraintsy rhe linear.
Vectorx”, which satisfies constraints of problem (11) anéhimizes an
objective function is called an optimal solutioredause the functiog, (x) >0

is convex and matri>[ D] (usually it is an elasticity matrix of the strud is

positively defined, global minimum of objective ftion in the domainL of
admissible solutions is obtained.

Rosen’s projective gradients algorithm is one of ttonvex mathematical
programming problems solution algorithms. In Rosemethod the gradient of
objective function is projected on the edge of #uamissible domain [33,34].

The vector of solution direction is described byradient projection. Vectoxk"
is optimal solution if satisfies optimality criten of Rosen’s algorithm:

-1

{[I]—[Dyﬁ(xD)T ([Dgp(xﬂ)}[w(xﬂ)ﬁ [ng(x'j)}}ﬂf(xm):O, (12)
([oo()[oe()] | Toe()Jor ()20 as)

here Of (XD), D¢(XD)— gradient of objective functiorf (x) of problem (11)
and gradient of active constraings(x)=0 (i<1,2,.. m, i0l). According

to the formula (12) the projection of gradidnt (xD) on the edge of admissible

domain L is determined.
For the physical interpretation of optimality crim the Kuhn-Tucker
conditions are used [11]. Kuhn-Tucker conditions aelated to the optimal

solution x" of the initial problem (11). For the convex fumcts Kuhn-Tucker
conditions are as adequacy criterion for the glodalution of the initial

problem. It states [11]x" is an optimal solution if exists such scalar npliirs
A (i=1,2... m), which satisfies the following conditions:
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of (xD)—[Dqﬁ(xD)Ta =0, (14)
AT4(x") =0, (15)
A=0. (16)

In formulae (14)-(16) matrix of all gradients iseds not only of active
constraints ¢, (x)=0 (i<1,2,.. m, i0Ol), therefore zero values of vector
A =0 are determined by using complementary slacknasditoans (15),(16). It

is known, that in Kuhn-Tucker conditions (14)-(1#lues of vectorA are
Lagrange multipliers. By comparing dependencieg @l (14) can be seen,

that if optimal solutionx” exists, physical meaning of conditions (13) is the
vector of Lagrange multiplief®r the problem (11):

a=([o0(x)[o0(x)] | [o0(x")Jot (x), an

A=0. (18)
Therefore, by using vectors” and A , variables of dual problem are obtained:
y, =0f (x”) =[D] X", (19)
o (x") AT
yz—l v /I—[D¢(x )} A, (20)
Y1~ Y, =0, (21)
AT4(x") =0, (22)
A=0. (23)

In theory of mathematical programming condition®)(lby using projective
matrix

P1=01-[0()] (e () oo(x)] ) [oolx)] e
| [P]Of (xD) =0. (25)

In work [10] is shown, that Kuhn-Tucker conditiofig})-(16) in calculations of
elastic-plastic structures are residual deformatimompatibility equations.
Therefore, Rosen’s optimality criterion (12)-(13shsuch meaning. And for the



10 Piotr ALAWDIN, Juozas ATKOCIUNAS, Liudas LIEPA

internal forces calculation problem, which is fotated according to
Castiglian’s principle, the following state is \dlithe distribution of true
residual internal forcess, complies with satisfied deformation compatibility

equations. In the case of cyclic-plastic collagse dependencies of associative
flow law are included in to deformations compattpiequations [3,5].

4. DISCRETIZATION OF THE STRUCTURE

Discretization of the structure, which geometry,tenals and cross-sectional
parameters are known, in this work is performechgisa equilibrium finite

elements method [12,20,23]. By using this methodiligium equations are
written more accurately compared with other typiefinite elements. Also more
accurately are described statically admissible tielas, and residual S,

internal forces of the structure at shakedownhis work total internal forces
are denoted a§ =S, + S, and displacements=u, +u, .
Let's say, that the degree of freedom (DOF) of sheicture ism, then the

vectors of global displacements and loadsF are u:(ul,u.,z,...,qﬂ)T and

F =(F1,F2,... F )T respectively. The vector of internal forces of #lement

''m

k (k=12....7, kKOK) with a number of 7 nodal nodes

(I=12,..p,, 10L) is Sk=(Sk1,Sk2,...,Sk|,...,SHK)T. Total number of

vector's S, components igj, . Internal forces&(x) at any pointx of the
finite element are expressed as nodal points iateforces S .. The
approximation functions of equilibrium finite elententernal forcesS, (x) are
as follows:

S (x) =[Ny (x)]Sw (26)
[N (x)] - approximation matrix of thé -th element,S, - 7, -dimensional

vector of internal forces at element nodes. Usdahy;tions[Nk (x)] are such,
that structure’s element’s differential equilibrilgguations

[A]lS(x)=a(x) (27)

are not identically satisfied. Therefore equililniuof the discrete model are
ensured for the elements of the structure and Heir tmain nodes [23]. By
putting expression (26) into equations (27) andgoeting differentiation (if the



OPTIMIZATION OF THE STRUCTURES AT SHAKEDOWN AND ROSEN’S 11
OPTIMALITY CRITERION

load is evenly distributequ(x) =q,), the algebraic equilibrium equations of
the finite element are obtained:

[A((x)]sk =q,, kOK. (28)

Here [ A (x)]=[Al[N,(x)]. Separate elements are connected to the system

by means of equilibrium equations for the main rsodé the elements [23].
Considering boundary conditions, the systemmoequilibrium equations of the
structure is finally written as follows:

[A]S=F or Zk:[A(]Sk=F, (29)

[A] - equilibrium equation matrix ofmx n) order, which is used to find the
vector of statically admissible residual internatces S, . Residual internal
forces S, are self-equilibrium, i.e. satisfies equilibriumuations:

[A]S, =0. (30)

The geometrical equations of the structure's discraodel are obtained by
using principle of virtual works. For the individué -th finite element these
equations are as follows:

[A]'u-[D]S, =0, kOK. (31)

The elasticity matri>{ Dk] of the k -th element, in the local coordinates system,
are calculated by the following formula:

[D]= A{ [N(x)] [DI[N(x)]aA (32)

Integrating on the surface are§ of k-th element and taking into account

boundary conditions, we have the geometrical eqoatfor the whole discrete
model of the structure:

[A]"u-[D]s=0, (33)

[D] - quasidiagonal elasticity matrix of structurelereents. Physical meaning

of vector's u components is determined by the formation orderthad
equilibrium equations (29) and dual interrelatiobgtween equilibrium
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[A]S=F and geometrica[ A]' u-[D]S=0 equations. By applying known
finite elements procedures elastic displacemendsedastic internal forces,

are easilyobtained.

Variable repeated load (t) is defined by timeless bounds,,, and F

p
(F- <F(t)s Fsup) . For example, variation locus of two forcEsand F, can

inf

be illustrated as a tetragon, which apexes are e@tibns of forces bounds

_ T _ T
vectors components=; —(Fl’mf, Fz,—nf) , Fsup—(Fl,Sup, Fz,su,) . The set

of apexes isj[dJ (j:1,2,...,p, p= 2“); i.e., if m=2 then p=4. By
solving residual internal forces and displacemeamslysis problem of the
structure at shakedown, vectofrg,, and F,; are known, therefor tetragon is

fixed from changing form.
Vectors of elastic solutior,; are linear functions of load variation bounig,,,

F,s and defines all apexes of elastic internal fofeaographj 0J :

S (t) =[a]F (t). (34)

Here[a] - an influence matrix of elastic internal forces.
Nonlinear yielding condition of the elastic-plastiement cross-section
¢=C-f(s.(t)+s,(t))=0 (35)
is suitable for the case when the shakedown prooésthe structure is
investigated during time (considering every possible loading histdﬁ(t)).
The plasticity constanC =(S))2 is related to the dimensions and material of
the cross-section, e.g. limit internal forc®. These limit internal forces
S (kO K) are considered constant within boundseth finite element. For
the shakedown state of the structure residualriatdorcesS, in each section
of the structure must correspond to the yieldingditions (35) for each apek
of elastic internal forces, (t) =[] F (t) hodograph:

$,=C - f,(s;+s)=0, jOJ. (36)

Thus yielding conditions are checked at each npdait | of the k -th finite
element:
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¢k|,j=Ck_fkl,j(sekl,j+srkl)20! kOK, 10L, jOJ. (37)

Yielding conditions of the whole elastic-plasticustture are written as follows:
¢,=C-f,(s;+s)=0, jOJ. (38)

Here Cz(cl,cz,...,q,...,c;])T - vector of plasticity constants of whole
structure.

Statically admissible residual internal forc8s satisfies equilibrium equations
(30) and yielding conditions (38).

Kinematically admissible residual displacementsof the elastic-plastic
structure satisfiegeometrical equations (33):

[A]"u, =[D]S +@,, (39)

o, :(@pk,)T— vector of plastic deformations. Components oftwe®, are

calculated according to formula:

N
O :Zepkl,j :Z[D¢kl,j (Sekl,j + Srkl):l /]kl,j1 A | P i =0,
i i

A; 20, kOK, 10L, jOJ.

(40)

ofy i (Se i +S
Here |:D¢kl,j(sekl,j+srkl )]T:[ leJ(aeg'J rkl)] - gradients of yielding
Tkl

conditions (36) 4 ; - plastic multipliers. Residual internal forc&s caused by

the plastic deformation®, in the structure at shakedown ensures, that during
load variation new plastic deformations will notpepr. Residual deformations
e, =[D]s, +@, and residual displacements of the structure at shakedown

may not be unique: they depends on the particigéoty of loadingF (t) :

5. COMMON MODEL OF OPTIMIZATION OF THE
STRUCTURE AT SHAKEDOWN

The paper refers the optimal shakedown design enobdf the structure at
shakedown as followdor given load variation bounds, , F,,, the vector of

sup?
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limit forces S, satisfying optimality criteriormin z LS. and the constraints
k

of shakedown and stiffness, should be found

find min Zk: L Sor» (41)
subject to [A]S, =0, (42)
=C(S)- (S (S0)*+S )20, (43)

[ (S6)]S +6,(So)-[A" u, =0, (44)
0, (%)= X[ (S, (So)+s.)] 4, (45)

J

AC(s0)-fi(s,(s0)+s)]=o0, (46)
220, A =[Ay Ay o AT (47)
SO 2 SO,min' (48)

um|nSu (SO)+ursumax' (49)

S, =[a(So)|F;, U =[B(Sp)]F; forall jOJ,  (50)

where S;, S, U, A; are unknowns. Objective function (41) can express

the distribution of limit internal force$, or directly the volume of the structure
[3,8,31]. The admissible bounds of displacement&leu stiffness conditions
(49) u,,;,, and u can be determined according to design standd@p [

Mathematical model (41)-(50) is a continuous optation problem. The multi-
extremity of problem (41)-(50) is determined by @dementary slackness
conditions for mathematical programing (46). Praobl¢41)—(50) has to be
solved in an iterative manner [3,8,31]. A vector liofit forces of the first

iteration Sg(l) is obtained in the first solution e problem with the initial data
(initial elemental flexibility matrix[D]). A new flexibility matrix is formed
using new forcesS\®. Then, new influence matricefa], [B] can be
calculated along with new elastic forceSe’j:[a]Fj and displacements
U, =[B]F;. lterations are continued until the difference vimen two
consecutive objective function values is as snsadesired.
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6. NUMERICAL EXAMPLE OF 2D FRAME VOLUME
OPTIMIZATION AT SHAKEDOWN CONDITIONS

The known geometry four-storey plane (two dimenaiprirame structure is
considered (Fig. 2). Columns of the frame are dhesigfrom standard rolled
HEB type cross-sections, beams of the frame angrss$ from standard rolled
IPE type cross sections. Bending stiffnE$sand axial stiffnes&A of elements

are known (whereE=205000 - elastic modulus of steel, N/mml =1 y =a,A”

- second moment of cross-sectional area; cf - cross-sectional area, €m
(Table 1);a, andb, are known relation constants, provided in Tab[6,35]).

Limit bending momentM, = f W, and limiting axial forceN, = f, A of frame
members are known (wherd, =253.2 - yield strength of steel, N/rfm

W, =W, , =3 A - plastic section modulus,’ma, andb, are known relation

constants, provided in Table 2 [6,35]), see Fig. Tlze frame is subjected to
variable repeated loading, i.e. two concentratece®F, (t) and F, (t) , varying

in time, are applied and their variation bounds @reF,(t)< 200.0 kN and

-33.3<F,(t)< 160.6 k\.  Optimization problem (41)-(50) (excluding

conditions (49)) is solved (using MATLAB solvdmincor): it is determined if
the frame under given loading experiences shakedoknn residual internal

forcesS,, which ensures shakedown process, plastic def'mmsaw; and
residual displacements are obtained, as well limit internal forc&s.
Table 1. Cross-sectional properties of initial srgections
Acnt =A% ent Wy =a e
HEB 550 254.1 143011.4¢ 5632.4:
IPE 100 10.3 176.85 40.12 =

Table 2. Cross-sectional properties relation cansta

Iy WPLY

& by 8 b,
HEB 550-1000 0.0010 3.3910 0.0402 2.1399
IPE 0.7885 2.3210C 0.8411 1.6572

Name of I-shape
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In case of standard steel rolle-shape crossections the yielding conditions f
the i -th crosssection rea
M, +M,;-M, <0,
M, /118+c N, + M, /118 ¢ N — M,
M, /118-c¢ N, +M, /118 ¢ N - N, (51)
M, -M, -M,; <0,
-M_ /1.18+¢' N,-M, /L18 ¢ N - M <0
-M, /1.18-¢' N, - M, /118 ¢ N - M,

Graphical interpretation of yielding conditions J34 shown in Fig :

A IA
o o

IN
o

N Fp, KN F = 200.0;F, ;= 0;
% Fyeup = 160.6;F, , = — 33.3
@ [0;160.6]  [200;160.6]
Mg M
0
®) F. kN
"y [0,-33.3]  [200;-33.3]
a) | ° b)

Fig. 1 Graphical interpretation of linearized yielgl conditions of -shape
cross-section (a); load variation locus (b)
In this work as the main limit internal force thmit bending momenM,, is
chosen. Therefore the relations between limit bemanoment and limit axi
force of the crossections are expressed as eccentricc® andc [26,35. For
the elements under tension they r

M. O,a,A* )
ct=—0 =_"¥3 —gq M 1, 52
N, oA % (52)
for the elements under compress
- g aA”
c :_M 0i :—ya3 ZE A (53)

Ncr,i )(Uy A X
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Here N, =0, A= yo, A- limit/critical axial internal force (the design ¢kling
resistance of a member under compressigny. reduction coefficient which

depends on the non-dimensional slenderviess a column [13,26,37].
In this paper the lower bound of constructionaluieements S, ., (48) is
min

compatible with the minimum value of limit bendimgoment M. Due to

requirements of limit slenderneds, =120 [13,37], then the minimum value of
limit bending moment read [26,31]:

by
12 ot
Pl )

The buckling lengthl, for the columns were determined according to
requirements as established by national Lithuarsamctural requirements

Mo = (54)

O.cr

(STR) [37]. No structural requirements of minimulerglerness of beams have

been considered.

Calculation scheme of the structure is shown ifgare 2.

E Moz Fl | Mo, E
2 IPE IPE 2
M| HEB |:1| Mo fHEB 3.0
= Mo M E -1
2 IPE IPE 2
M| HEB F Mo, |HEB 4.0
MOZ \‘/ MOZ
P2 IPE IPE Pl 6om
M| HEB M| HEB 4.0
= Mo | Mo, Y
2 IPE IPE F,
M| HEB 5.0
Vi

13.5m13.5m1 4.0m 13.0m}

14.0m

Fig 2. Calculation scheme of the frame

Discrete model of the structure consist of 16 @mlements, 14 nodes, each
element has a section at each end, and therefiaentamber of computational
sections is 32. Each element has a bending morogngat each section and an
axial internal force (one per element), therefatltnumber of internal forces
are 48. Degree of freedom (DOF) is 36.
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Table 3. Possible loading combinations

The wind load is from the left The wind load isrfrdhe right
Comb. LF )+ F, o0 Comb. ILF,+F,
1.0F5 qp 0.5F qup | 06Fsp  LOFm  OSFap, L.3Fp s
0.8F,.¢, l'OFl,sup‘ 0.4F) gy O-TFpint 1O sup \ L-OFjnf
1.0F gyp L.OFsup
0.6F; sup ‘ 0.2F) sup 0.4F3 nt 0.7Fy jnt
l'OFl,sup 1-OF1,sup
0.4F, qup | T | 0.4F
Ve Ve Ve 7777
Comb. lll:F,,; +F,, Comb. IV:F,; +F,;
1.0F; oy 0.6F sup 1.0Fyin 1.3F it
0.8F 5, 0.4F; qup O-TF2jns 1.0F5 jnf
0.6F, g 0.2F5 qup 0.4F s 0.7Fint
O-4F2,sup 0F2,Sup 0-1F2,inf 0-4F2inf
Vi Vi Vi Ve

The optimum design was obtained after 30 iteratises Table 4, Fig. 3). The
optimal cross-section areas of frame members wieosen according to the
limit moments distribution (see Table 4). The mialnolume of such structure

under given loads, at shakedowrVjg =1.5161 ni
Maximal horizontal linear total displacement lochtt the top beam is

u =ul +u" =0.1056+ 0.0444 0.15T

max € max
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Table 4. The optimum volume of 4-storey steel frasoktion convergence per
iterations

Iter

No Volume,nt Mg, kNm Mg, kNm A, cnf A, cnt
0 0.8708 64105.0608 9.4273 254.1 10.3
1 1.9385 3815.2648 463.3528 416.7315 108.0309
2 1.5864 1076.4244 811.1802 230.7010 151.4625
3 1.3227 1006.4545 466.2454 223.5676 108.4374
28 1.5032 1363.6641 560.5426 257.6638 121.1852
29 1.5107 1401.2863 556.4239 260.9617 120.6471
30 1.5161 1404.6600 562.5669 261.2552 121.4491
Optimal cross-sections HIEBIS00 (5=
270.0 134.0

Convergence of structure’s volun6m3) per iteration is shown in graph bellow
(see Fig. 3).

. )Y **
E16
g /
€14
2., ]
91,2
o

N

0,8

01234567 89101112131415161718192021222324252627282930

lterations

Fig. 3. Convergence of structure’s volumée)per iterations

7. CONCLUSIONS

Static (lower bound) shakedown theorem enablesdate an optimization
problems using equilibrium finite elements.

2. The admissible stress-strain state of a structusbakedown is described by
Euler-Lagrange equations for the plastic state.

3. Optimization problem of the structure at shakedaenditions is a non-
convex mathematical programming problem.
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4. Numerical example showed, that mathematical modelomimization
problem could be updated with a constraints ofllaca global stability of
structures elements (e.g. constraints for limihdé&ness according to EC3
serviceability limit state (SLS) requirements).
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OPTYMALIZACJA KONSTRUKCJI W STANIE PRZYSTOSOWANIA
A KRYTERIUM OPTYMALNOSCI ROSENA

Streszczenie

W pracy przedstawiono problemy zastosowania ekstigyoh zasad energetycznych i
nieliniowego programowania matematycznego w tgudiystosowania konstrukcji. Za
pomog zasad energetycznych, ktére opisgieczywiste stany nagrenia-odksztatcenia
konstrukcji, tworzone & dualne modele matematyczne analizowanych probleméw
(sformutowania statyczne i kinematyczne). Pokazga& na podstawie wgj
wymienionych modeli matematycznych formutowany jegbiny model matematyczny
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optymalizacji konstrukcji przy uwzedinieniu ogranicz@éw postaci stanéw granicznych
nosnosci/bezpieczastwa i uwytkowalnaci. Analizowane s mazliwosci rozwigzania
problemu optymalizacji w kontékie fizycznej interpretacji kryterium optymakw
algorytmu Rosena.

Stowa kluczowe:  przystosowanie, ekstremalne zasawygetyczne, projektowanie
optymalne, programowanie matematyczne, Kkryterium
optymalndci Rosena
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