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Abstract 

Steel I-section members subjected to compression a monoaxial bending about the major 

axis are dealt with in this paper. The current Eurocode’s design procedure of such 

members is based on a set of two interpolation equations. In this paper a simple and yet 

consistent Ayrton-Perry methodology is presented that for beam-columns yields the 

Ayrton-Perry design strategy similar to that utilized in the steel Eurocodes for design of 

beams and columns but not used so far for the beam-column design. The results from 

developed design criterion are compared with those of Method 1 of Eurocode 3 and the 

Ayrton-Perry formulation of a different format that has been recently published. 

Keywords:  steel I-section, beam-column, buckling resistance, flexural-torsional 

buckling, generalized Ayrton-Perry formulation, Eurocode’s design 

philosophy 

1. INTRODUCTION 

Interaction equations proposed in [1] for design of steel I-section members cover 

a wide range of cases, i.e. both unrestrained elements for which the flexural-

torsional buckling mode becomes a dominating failure factor and elements 

restrained laterally and torsionally in discrete point along the element length for 
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which the flexural in-plane buckling mode becomes a more susceptible one. For 

the background information one has to refer to [10]. 

Besides the design criteria based on interaction equations, Eurocode 3 [1] 

introduces the so-called general method for the evaluation of out-of-plane 

buckling resistance (FTB resistance) of beam-columns the validation of which is 

presented in [9]. Different Eurocode’s procedures that might be used for design 

of steel frames are summarized in the papers presented at ICMS 2016 [2, 4]. The 

design procedures are based on the weakest element approach or on tracing the 

structure nonlinear equilibrium path. The resistance evaluation based on the latter 

procedure yields from an attainment of either the section resistance in the most 

stressed member during the stress resultants redistribution process or the structure 

limit point on the equilibrium path. 

Recently, an international research effort has been made into the resistance 

assessment of steel beam-columns being based on the generalized Ayrton-Perry 

formulation [8, 12]. The proposals presented there are dedicated rather to 

unrestrained beam-columns than to members with discrete in-span lateral and 

torsional restraints. 

Authors focused in this paper on the development of generalized Ayrton-Perry 

formulation that is an alternative one to that presented in [12]. This alternative 

approach allows covering not only unrestrained beam-columns but also the 

elements that have in-span discrete lateral and torsional restraints. The proposal 

presented hereafter is a continuation of authors’ investigations presented in [2, 3]. 

In this paper a more consistent Ayrton-Perry approach is developed than that 

presented in [3]. It uses the in-plane plastic collapse load multiplier of perfect 

beam-columns (based on the proposal given in [4]) that is combined with the out-

of-plane elastic load multiplier according to the solution presented in [14] for the 

evaluation of the beam-column slenderness ratio under different combination of 

load effects. 

Beam-columns of class 1 and 2 bisymmetric I-sections are considered hereafter. 

An example of an H-section beam-column under a single curvature and a double 

curvature (symmetric and antisymmetric moment loading conditions, 

respectively) is considered in this paper. The results are compared with those 

yielding from the Eurocode’s Method 1 interaction equations and from the 

formulation presented in [12]. 

2. BASIC CONCEPT OF THE PROPOSED AYRTON-PERRY 

FORMULATION 

The basic assumption of the proposed concept is to maintain the definition for the 

slenderness ratio used for elemental cases of the beam LTB (lateral-torsional 

buckling) resistance and the columns FB or TB buckling resistance (flexural F or 
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torsional T) in terms of both the meaning of variables and the way of inclusion of 

the effect of imperfections. As a results, the proposed generalized Ayrton-Perry 

formulation coincides with that used in [1] for the buckling resistance evaluation 

of I or H-section columns and beams. 

The basic concept of proposed approach is illustrated in Figure 1 in which the 

point AEd represents the dimensionless load effects due to the applied design loads 

while Acr and Aip,Rk represent the critical state with regard to elastic flexural-

torsional buckling and the in-plane plastic collapse state without any effect of 

imperfections included. Two generalized load multipliers associated with two 

mentioned above characteristic member states under the fixed proportion between 

the load effects need to be evaluated. They are defined as follows: 

1. The critical load multiplier αcr has an explicit graphical interpretation as it is 

illustrated in Figure 1:  

Ed

cr

OA

OA
cr

 

(2.1) 

2. The collapse load multiplier αip,Rk has also an explicit graphical interpretation 

and might be expressed as:  

Ed

Rkip,

,

OA

OA
Rkip

 

(2.2) 

The load multiplier associated with the characteristic buckling resistance of 

imperfect beam-column elements αb,Rk can be expressed through the reduction 

factor χk as follows:  

RkipkRkb ,,  
 

(2.3) 

in which the characteristic value of the reduction factor χk is defined in the same 

way as given for the elementary cases of the buckling resistance of beams and 

columns in [11]. 

The Ayrton-Perry formulation for the buckling reduction factor χk of the 

characteristic member resistance leads to the following equation [11]:  

   kkkk   11
2

,    
 2.0 kb 

 
(2.4) 

in which the imperfection factor for the flexural-torsional buckling αb is to be 

interpolated between that of beam buckling αLT and that of column buckling α (see 

section 5) while the relative slenderness ratio is calculated as: 
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(2.5) 

In Figure 1, the load multiplier αb,Rk is graphically associated with the point Ab,Rk, 

and it might be expressed as: 

Ed

Rkb,

,
OA

OA
Rkb

 

(2.6) 

 
Fig. 1. Graphical interpretation of the proposed generalized Ayrton-Perry formulation, 

using the imperfection factor α corresponding to  Tzy  ,,min   

Points Acr, Aip,Rk and Ab,Rk evaluated for different proportions between load effects 

constitute respectively: the flexural-torsional critical load interaction curve, the 

in-plane collapse load interaction curve and finally - the flexural-torsional 

buckling resistance interaction curve. It is important to note that discrete lateral 

and torsional in-span restraints do not affect the beam-column in-plane behaviour. 

As a result, the position of in-plane collapse load interaction curve becomes 

unaffected while the shape of flexural-torsional critical load interaction curve is 

significantly affected. It becomes uplifted with regard to greater values of the 

critical load multiplier αcr in the domain of greater bending moments in relation 

to the compressive axial force. Contrarily, there is a greater chance for the critical 

force about y-y axis to drop down below the critical force about z-z axis that 

usually governs the critical state of longer unrestrained columns. The method 

proposed herein widens therefore the scope of application of the generalized 

Ayrton-Perry formulation presented in [12]. 
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3. IN-PLANE COLLAPSE LOAD MULTIPLIER 

Since the effect of imperfections is introduced in the Ayrton-Perry formulation 

through the introduction of the imperfection parameter, the collapse load 

multiplier involved in the evaluation of slenderness ratio is to be calculated for 

the perfect structure but with a proper account for the second-order in-plane P-δ 

effect. This means that an advanced type of inelastic analysis is to be used in the 

evaluation of the said multiplier. This may be done using the finite element 

equilibrium path analysis [7] or any other analytical formulation that is able to 

reproduce the numerical results with an accuracy being acceptable from the 

engineering point of view. The latter option is postulated in the present study. 

Since the analytical formulation used herein is the modified one of that presented 

elsewhere [4], only the final form applied to perfect beam-columns is presented 

hereafter. Let us use dimensionless variables of the following format:  

Rkc

Ed
Ed

N

N
n

,

 ,    
Rkcy

Edy

Edy
M

M
m

,

,

,  ,    
Edy

Ed
n

m

n

,

 ,    
Ed

Edy

m
n

m ,
  (3.1) 

where Nc,Rk is the axial force cross-section resistance and Mcy,Rk - the bending 

moment cross-section resistance about y-y axis. 

The in-plane ultimate limit state of perfect members is section class dependent. 

For class 3 and 4 I-sections, the section resistance is described by the well-known 

linear equation. In case of class 1 and 2 I-section members, the section plastic 

resistance curve is nonlinear and convex. For bisymmetric I-sections and a certain 

value of αn ratio, the in-plane ultimate limit state of perfect beam-columns of 

class 1 or 2 sections is described by equations based on the plastic hinge method.  

For Eurocode’s bi-linear simplification of the nEd-my,Ed  curve, the following 

equations hold for the element resistance under moment gradient: 

a) for 
2
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b) for n
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where βδ and βδ2 are the amplification factors corresponding to the two lowest 

flexural in-plane buckling modes: 

EdRkipy n,

2

1

1





 ,    

EdRkipy n,

22

25.01

1


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
  (3.4) 

a is the section parameter according to [1], ξmax - the dimensionless coordinate 

along x-axis (assumption: ξ = 2x / L, where L is a length of the element) that 

corresponds to the section of maximum section resistance utilization ratio under 

bending and compression (where multiplier αip,Rk has minimum positive value for 

considered dimensionless variables nEd and my,Ed), ψy - the support moments ratio 

(ψy = My,Ed,supp,min / My,Ed,supp,max, where My,Ed,supp,max and My,Ed,supp,min are maximum 

and minimum support moment, respectively), y  - the flexural slenderness ratio 

about y-y axis corresponding to the lowest half-sine bifurcation mode,  1w , 

 2w  - the shape functions dependent upon the dimensionless coordinate along 

x-axis corresponding to a symmetric single curvature and an antisymmetric 

double curvature, respectively, ηEd,y, ηEd,y,2 - the dimensionless first order 

displacement amplitude corresponding, respectively, to the equal end moments of 

the opposite directions (single curvature case) and to the equal end moments of 

the same direction (double curvature case): 

 y

y
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in which the other notations are according to [1]. 

The characteristic buckling resistance may be evaluated using two possible 

approaches: 

- Approach 1: Combining the linear stability solution described by equation 

(4.1) from the following section and the solution of characteristic member in-

plane resistance described by equations (3.2) and (3.3), with the assumption 

of neglecting the effect of in-plane buckling (i.e. βδ = 1.0, βδ2 = 1.0), 

- Approach 2: Combining the linear stability solution described by equation 

(4.1) from the following section but with the assumption of neglecting the 

effect of in-plane buckling (i.e. NEd / Ncr,y ≡ 0), and the solution of 



A CONSISTENT AYRTON-PERRY APPROACH FOR THE FLEXURAL-TORSIONAL 

BUCKLING RESISTANCE EVALUATION OF STEEL I-SECTION MEMBERS 

95 

 
 

characteristic in-plane buckling resistance described by equations (3.2) and 

(3.3). 

It has to be noted that both approaches, Approach 1 and Approach 2, utilize the 

member in-plane resistance that differs from that of the cross section in-plane 

resistance. In this context, the in-plane buckling reduction factor χip used in Figure 

1 is approach dependent according the following notation: 

-  for Approach 1: 

1ip ,    Tzy  ,,max  (3.7a) 

- for Approach 2: 

 2

1,1min ipip   ,    Tz  ,max  (3.7b) 

where y , z , T  are the column slenderness ratios corresponding to flexural 

buckling about y-y and z-z axes, and to torsional buckling about x-x axis, ip  is 

the in-plane relative slenderness ratio equal to y5.0  in case of anti-symmetric 

transverse loading components and equal to y  in the other cases of loading 

components. 

The multiplier αip,Rk for the in-plane resistance is therefore also the approach 

dependent. In Approach 1, the said multiplier is calculated from the equations 

(3.2) and (3.3) but neglecting the effect of in-plane buckling (i.e. βδ = 1.0, 

βδ2 = 1.0). Such an analysis is denoted hereafter by MNA+ since the classical 

analysis denoted by MNA is extended in order to calculate the bending moments 

as a sum of the first order moment stress resultants and additional moments 

resulting from the axial force being multiplied by the first order deflections 

  1,00 ww Ed  and   22,,002 ww Ed . In Approach 2 the multiplier αip,Rk is 

calculated directly from the equations (3.2) and (3.3) with use of greater than unity 

amplification factors according to equations (3.4). It is important to note that for 

my,Ed = 0 the value of multiplier αip,Rk is to be calculated for an infinitesimally 

small value of the my,Ed (for example for my,Ed = 10-6). Such an analysis is denoted 

hereafter by GMNA+ in accordance to the definition presented in [6]. 

In the detailed analysis presented hereafter, the simply supported beam-column 

of HEB 300 section of the steel grade S 235 is taken into consideration. According 

to Eurocode 3 [1] the cross section is class 1 in pure compression (the most 

unfavourable load situation) and can be treated as a class 1 cross section for all 

others combinations of the bending moment and axial force. The section 

resistances for this section are as follows Nc,Rk = A∙fy = 149.1∙23.5 = 3504 kN, 

Mcy,Rk = Wpl,y∙fy = 1869∙23.5 = 439.2 kNm and the section resistance parameter 
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a = 0.235 for the combination of bending moment and axial force. Three values 

of the slenderness ratio y  corresponding to compression are accounted for, 

namely equal to 0.5, 1.0 and 1.5 (the element length corresponds to 6101 mm, 

12202 mm and 18303 mm, respectively). Using the trigonometric sin-functions 

to represent the shape functions given by     5.0sin1 w  and 

    sin2 w , calculations were performed according to equations (3.2) and 

(3.3) for 9 discrete values of αn and αm take 0.00, 0.25, 0.50, 0.75, 1.00 and 

additionally αn = 0.5a, representing the certain proportion between the axial force 

and the bending moment. The results are presented in Figure 2 by solid (Approach 

1) and dashed (Approach 2) lines that link the discrete points obtained from 

calculations for certain proportion between the axial force and the bending 

moment. For comparison, the Eurocode’s interaction curve for the cross-section 

resistance [1] (the slenderness ratio equal or less than 0.2) is also given by dotted 

line. 

The results show that for the uniform moment and compression the interaction 

curves representing the formation of the plastic hinge in the middle length section 

are below those of the cross-section resistance. The in-plane plastic limit curves 

for Approach 1 are above those obtained from Approach 2, especially for 

my,Ed → 0. In contrast, the in-plane inelastic stability limit curves obtained from 

Approach 2 are placed lower than those from MNA+. It is important to note that 

for my,Ed = 0 the value of multiplier αip,Rk obtained for Approach 1 from MNA+ 

does not refer to the dimensionless in-plane stability criterion 

 2

, 1,1min ipEdRkip n    obtained from GMNA+ in which an infinitesimally 

small value of my,Ed is used in order to activate the buckling path. In Approach 1 

the results obtained for my,Ed = 0 refer to the yielding criterion 0.1, EdRkip n .  

In case of antisymmetric moment diagram, the interaction curves consist of two 

branches, one representing the formation of the plastic hinge at the distance 

ranging from zero to L/4 from the end point, and the second one representing the 

formation of the plastic hinge at the end section (coinciding with the section 

resistance interaction curve). The results are however very close to each other, 

therefore also to those representing the section in-plane resistance under the 

combination of bending moment and axial force.  
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a) 

 

 

b) 

 
Fig. 2. Collapse load interaction curve in dimensionless coordinates nEd and my,Ed,  

a) symmetric bending (ψy = 1), b) antisymmetric bending (ψy = -1) 
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4. CRITICAL LOAD MULTIPLIER 

The critical load multiplier αcr is calculated in different way for the inclusion in 

Approach 1 and Approach 2. 

a) 

 

 

b) 

 

Fig. 3. Critical load interaction curve in dimensionless coordinates nEd and my,Ed,  

a) symmetric bending (ψy = 1), b) antisymmetric bending (ψy = -1) 
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In Approach 1 it is calculated with use of the solution obtained in [14] according 

to linear buckling analysis (LBA) and neglecting the beneficial effect of 

prebuckling displacement on the elastic flexural-torsional instability: 

     22222

, 111 TEdcrzEdcryEdcrLTEdycr nnnm  
 

(4.1) 

where LT  is the beam slenderness ratio corresponding to lateral-torsional 

buckling (LTB). 

Since in Approach 1, both in-plane and out-of-plane buckling effects are 

considered, the solution is denoted hereafter by LBA IP+OP. 

In Approach 2, the critical load multiplier αcr is also calculated from equation 

(4.1) but neglecting the effect of in-plane buckling (i.e. NEd / Ncr,y ≡ 0). Since in 

this case only the out-of-plane buckling effects are considered, the solution is 

denoted by LBA OP.  

The calculation were performed to evaluate the critical load interaction curves for 

the same cases as presented in Figure 2 for the in-plane collapse load interaction 

curves. The results are presented in Figure 3. The critical moment for the lateral-

torsional slenderness ratio is for the moment gradient ratio ψy calculated according 

to [5]:  
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(4.2) 

where C1,s = 1.00, C1,a = 1.32 and the other notation is according to the ECCS 

Manual [10]. 

5. BUCKLING LOAD MULTIPLIER 

The solution of equation (2.4) for the flexural-torsional buckling resistance of 

beam-columns coincides with that for the columns and beams given in [1, 10]. 

The buckling characteristic resistance load multiplier is then calculated using the 

multiplicative form of (2.3). The flexural-torsional load multiplier for the 

buckling design resistance is evaluated according to [11]. 

The imperfection factor is suggested to be calculated from the following 

interpolation formula:  

mn

LT
b
















11
 (5.1) 
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where α stands for αy when the flexural buckling reduction factor χy has the 

minimum value or αz when the flexural buckling reduction factor χz or the 

torsional buckling reduction factor χT is of the minimum value; αn and αm are the 

factors describing the proportion between the dimensionless stress resultants. 

6. VERIFICATION OF THE PROPOSED FORMULATION 

The verification is presented by comparison the buckling resistance curves from 

the proposed method and those predicted with use of the Eurocode’s interaction 

equations and the Ayrton-Perry formulation proposed in [12]. It has to be noted 

that the Ayrton-Perry formulation presented in [12] is based on the improved 

lateral-torsional buckling curves developed in [13] for hot-rolled I and H sections 

(improved in relation to the original Eurocode’s recommendations). The section 

geometry and lengths are indicated in chapters 4 and 5 for the calculation of the 

beam-column in-plane behaviour and the elastic stability behaviour, respectively. 

Table 1 presents the summary of element slenderness ratios for three considered 

lengths and the buckling reduction factors for boundary cases of axial 

compression alone and bending alone. 

Table 1. Summary of element slenderness ratios and reduction factors 

y  z  T  
LT  

(ψy = 1) 

LT  

(ψy = -

1) 

χ = χz 
χLT 

(ψy = 1) 

χLT 

(ψy = -

1) 

0.5 0.857 0.571 0.639 0.393 0.626 0.875 0.955 

1.0 1.714 0.677 0.984 0.605 0.254 0.677 0.888 

1.5 2.572 0.704 1.228 0.756 0.126 0.512 0.820 

Since the reduction factor χz governs the design for axial compression, the 

flexural-torsional buckling αb is calculated according to equation (5.1) using 

αLT = 0.21 and α = αz = 0.49. 

Figure 4 shows the out-of-plane buckling results obtained for the slenderness ratio 

y  equal to 0.5, 1.0 and 1.5 where for each discrete point of the load factor the 

slenderness ratio is calculated according to (2.5) using results presented in Figures 

3 and 4, and the reduction factor with use of the imperfection factor according to 

(5.1). The results from the formulation developed in this paper are represented by 

solid (Approach 1) and dashed (Approach 2) lines and compared with those 

obtained with use of Eurocode’s Method 1 interaction equations. The Eurocode’s 

lateral-torsional buckling reduction factors are calculated in two distinctive ways, 

namely using the LTB general procedure according to the clause 6.3.2.2 (denoted 
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by dotted lines), and using the LTB alternative procedure for rolled or equivalent 

welded sections according to the clause 6.3.2.3 (denoted by dash-dotted lines). 

a) 

 

 

b) 

 

Fig. 4. Out-of-plane buckling resistance curve in dimensionless coordinates nEd  

and my,Ed, a) symmetric bending (ψy = 1), b) antisymmetric bending (ψy = -1) 

Figure 5 presents the verification of developed formulation using the Ayrton-

Perry formulation published recently in [12]. The results from the formulation 

developed in this paper are the same as in Figure 4 while those obtained with use 

of the Ayrton-Perry formulation presented in [12] are indicated by dotted lines. 
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a) 

 
 

b) 

 
Fig. 5. Out-of-plane buckling resistance curve in dimensionless coordinates nEd  

and my,Ed,  a) symmetric bending (ψy =1), b) antisymmetric bending (ψy = -1)  

The results obtained using both analytical approaches are close to each other and 

for the uniform moment and compression are placed above those obtained from 

Eurocode’s Method 1. In the same case of loading conditions there is a very good 

consistency between the analytical results obtained according to both Approach 1 

and Approach 2, and Ayrton-Perry formulation presented in [12]. In case of 

antisymmetric moment diagram, the analytical interaction curves for both 
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approaches are below those obtained in [12] but they are similar or below those 

obtained from Eurocode’s Method 1 interaction equations with LTB calculated 

according to clause 6.3.2.2 of [1]. For small values of nEd, resistance curves 

according to [12] are closer to Eurocode’s interaction curves with LTB calculated 

according to clause 6.3.2.3 of [1] than those with LTB calculated according to 

clause 6.3.2.2 of [1]. 

7. CONCLUDING REMARKS 

In this paper, the application of consistent Ayrton-Perry analytical formulation is 

presented for steel I-section members subjected to compression and monoaxial 

bending about the major axis. Advantages of the proposed formulation are as 

follows: 

1. Easy graphical interpretation. 

2. Only one design condition for checking the beam-column resistance instead 

of two buckling resistance conditions and one section resistance condition 

postulated in Eurocode 3 [1]. 

3. Elimination of the necessity of equivalent uniform moment factors to be 

involved in interaction design criteria. 

The proposed Ayrton-Perry design strategy is similar to that utilized in the steel 

Eurocode 3 [1] for design of beams and columns but not used so far for the beam-

column design. Two approaches are possible for the calculation of load 

multipliers αcr and αip,Rk. In Approach 1, the factor αcr does not take the effect of 

in-plane buckling into account since this effect is considered in the evaluation of 

αip,Rk. Contrarily, in Approach 2 the factor αcr takes the effect of in-plane buckling 

into consideration since it is neglected in the evaluation of αip,Rk. 

Investigations presented in this paper are dealt with bisymmetric I-sections of 

class 1 and 2. The illustrative example of HEB 300 section beam-column under 

symmetric and antisymmetric moment loading conditions is considered for three 

values of the slenderness ratio corresponding to compression, namely equal to 

0.5, 1.0 and 1.5. The results from the design criterion developed in this paper are 

compared with those of Method 1 of Eurocode 3 [1] and the alternative Ayrton-

Perry formulation that has been recently published [12]. Approaches 1 and 2 lead 

to the results being close to each other and have quite good consistency with the 

results obtained from Eurocode’s Method 1 interaction equations [1] and from the 

formulation presented in [12]. 

The developed modelling technique is of a general nature and may be easily 

extended for bisymmetric I-sections of class 3 and 4, and for monosymmetric I-

sections. In the former case, the linear section resistance interaction curve has to 

be adopted while in the latter - adopting a different section resistance curve for 

class 1 and 2 sections, and also different elastic FTB member resistance curve.  
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JEDNOLITE PODEJŚCIE AYRTON-PERRY'EGO W OCENIE  

NOŚNOŚCI STALOWYCH ELEMENTÓW DWUTEOWYCH PRZY  

WYBOCZENIU GIĘTNO-SKRĘTNYM  

S t r e s z c z e n i e  

Niniejsza praca dotyczy stalowych elementów o przekrojach dwuteowych poddanych 

osiowemy ściakaniu i jednokierunkowemu zginaniu w płaszczyźnie większej 

bezwładności przekroju. W takim przypadku procedura projektowania elementów wg 

aktualnej wersji eurokodu stalowego bazuje na zestawie dwóch interakcyjnych formuł 

analitycznych, dotyczących nośności elementu oraz zależności interpolacyjnej na nośność 

przekroju. W odniesienu do eurokodowego sprawdzania nośności elementów 

z uwzględnieniem ich stateczności, współczynniki interakcyjne łączące wykorzystanie 

nośności przy wyboczeniu i zwichrzeniu mogą być wyznaczane wg Metody 1 lub Metody 

2. W niniejszym artykule przedstawiono prostą, a jednocześnie spójną metodologię 

projektowania elementów jednocześnie zginanych i ściskanych, zgodną z podejściem 

Ayrton-Perry'ego, analogiczną do wykorzystywanej w eurokodzie stalowym do 

sprawdzania stateczności belek i słupów, ale do tej pory niewykorzystywanej do oceny 

stateczności elementów jednoczesnie zginanych i ściskanych. Wyniki otrzymane z 

proponowanego w niniejszej pracy podejścia analitycznego porównano z wynikami 

otrzymanymi z formuł eurokodowych, w których współczynniki interakcyjne 

wyznaczono Metodą 1 oraz z wynikami otrzymanymi z alternatywnej propozycji 

analitycznej, bazującej na odmiennym w porównaniu do zaprezentowanego w niniejszym 

artykule uogólnieniu podejścia Ayrton-Perry'ego. 

Słowa kluczowe: dwuteownik stalowy, zginanie i ściskanie, nośność na wyboczenie, 

wyboczenie giętno-skrętne, uogólnione sformuowanie Ayrton-

Perry, eurokodowa metodologia projektowania  
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