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Abstract 

Classical optimization problems of metal structures confined mainly with 1st class cross-

sections. But in practice it is common to use the cross-sections of higher classes. In this 

paper, a new mathematical model for described shakedown optimization problem for 

metal structures, which elements are designed from 1st to 4th class cross-sections, under 

variable quasi-static loads is presented. The features of limited plastic redistribution of 

forces in the structure with thin-walled elements there are taken into account. Authors 

assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling 

behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. 

Structures stiffness constrains are also incorporated in order to satisfy the limit 

serviceability state requirements. With the help of mathematical programming theory and 

extreme principles the structure optimization algorithm is developed and justified with the 

numerical experiment for the metal plane frames. 
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1. INTRODUCTION 

The optimization of thin-wall metal (TWM) frames and structures under different 

load combinations remains important problem today. In reality struc-tures are 

loaded by the variable repeated quasi-static loads and actions, which are arbitrary 

varying within known domain. These loads and actions are not pre-scribed by 

history in time, but only by their given combinations according to Eurocode or 

any other standard.  

Usually these combinations are assumed as independent, what is true only for 

linear systems. But relatively few papers take into account the mutual in-teraction 

of load combinations for the nonlinear systems such as real TWM ones. For 

instance, a thin-wall continuous beam with softening behavior under one-path 

loading was analyzed by [25] taking into account material non-linearity and local 

buckling. Sensitivity analysis of the stability problems of thin-walled structures 

presented in [17] 

The right approach is possible either by laborious analyzing of load history in 

time without any warranty of accounting for the worst histories of independent 

load cases, or for the entire class of loading as provided in the theory of 

shakedown analysis (SDA) [1,5,6,8,9,12,14–16,19,20,22,26,27,29–32]. The 

example of such shakedown approach to the steel frames confined with 1st class 

cross-sections was published in a paper by Atkočiūnas & Venskus [10]; 

a shakedown limit analysis of the reinforced concrete frames has been done by 

Alawdin & Bulanov [2]; an updated mathematical model for optimal shakedown 

analysis of plane reinforced concrete frames according to Eurocodes has been 

introduced by Alawdin & Liepa [3].  

The design of elastic-plastic metal frames is performed using the Eurocode 3 

(EC3) [13] or other standards, but the algorithms for strength and stiffness 

evaluation of TWM structures elements are not fully described in these standards. 

The details of analysis and design of such structures have been given in various 

works [11,28].  

In this paper a new mathematical model of SDA and optimization of plane thin-

wall metal frames, which elements are designed from 1st to 4th class cross-

sections, is proposed for general nonlinear and simplified linearized case. 

Structures stiffness constrains are also incorporated in order to satisfy the limit 

serviceability state requirements. The methodology, algorithms and 

implementation of metal frames weight optimization is presented and illus-trated 

by numerical example.  

Optimal results obtained, after solving continuous optimization problem, 

provided the optimal thin-wall metal cross-sectional area and member sizing. That 

allowed designing cross-sectional area from the manufacturers’ catalogue using 

mixed-integer non-linear programs approach. 
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2. MATHEMATICAL MODELS OF OPTIMIZATION OF THE 

STRUCTURES 

General mathematical model and assumptions 

Mathematical model in this paper is based on a hypothesis of small displacements; 

nonlinear or linear mathematical programing theory and finite elements method 

are used further. The features of limited plastic redistribution of forces in the 

structure with thin-walled elements there are taken into account [4]. The elastic-

plastic flexural buckling in one plane without lateral torsional buckling behavior 

of members is assumed. 

The TWM frames structures are loaded by forces F  varying in the certain domain 

  F . A set of the worst load combinations , ,l l LF  and corresponded to it a 

set of the worst inner elastic forces combinations , ,ej j JS  
may be chosen by 

procedure suggested by Alawdin [1]. 

Distribution of frame element parameters (limit inner forces) is optimized here at 

shakedown under stiffness and nonlinear strength constraints, when load 

variation, material parameters and lengths kL  of all k-th elements are known 

 k K . 

The general problem of shakedown optimization of TWM frames structures under 

loads  varying in the certain domain   F  is formulated as follows: find a 

vector of limit forces  0 0 ,k k K S S  of the sections, as well as the vectors of 

plastic multipliers
 

, , ,j j J    such, that: 

 0 0 ,min f S
 

(1) 

0( , ) ,j ej p   S GE S 0
 

(2) 

= , ,j

j

j J 

 
(3) 

0, 0,T
j j j   

 
(4) 

p  AGE  
 

(5) 

0 0 0 ,  S S S  
(6) 

F
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, , , ,, .min e inf r inf e sup r sup maxu u u u u u   
 

(7) 

Where  0 0f S  is criterion of optimization; 0


S  and 0


S  are constraints of limit 

forces 0S  of the sections;    is configuration matrix of elements limit forces;   

is yield or strength function of the sections; G is a influence matrix of residual 

forces; , , ,j j J   are the vectors of plastic multipliers;  u is the vector of 

displacements; indexes e, r mean elastic and residual ones; inf, sup - lower and 

upper bound of displacement variation accordingly; umin, umax - lower and upper 

constraints of the vectors of displacements.  

A diagonal matrix Ep assigns a value to the residual internal force in every thin-

wall element: 1 - if class of element is equal 1 or 2; 0 - if class of element is equal 

3 or 4 (i.e. it defines a disposition of the partial plastic redistribution of forces).  

A diagonal matrix Ep, 

, ,p pkdiag k K E E
 

(8) 

assigns a value to the residual internal force in every k-th thin-wall element cross-

section, k K : 1 - if class of element is equal 1 or 2; 0 - if class of element is 

equal 3 or 4 (i.e. it defines a disposition of the partial plastic redistribution of 

forces); K is a number of element cross-sections.  

Dimensionless moment M - curvature   diagram for pure bending of TWM 

element cross-section is shown in Figure 1. 

 

Fig. 1. Moment M - curvature  diagram for pure bending of TWM element cross-

section: _____ for Class 1 or 2; - - - - for Class 3 or 4 



OPTIMAL SHAKEDOWN OF THE THIN-WALL METAL STRUCTURES UNDER 

STRENGTH AND STIFFNESS CONSTRAINTS 

29 

 
 

Namely, if a vector S  of structure internal forces consists of the subvectors 

 ,k k kM NS  with the bending moment kM  and normal force kN  in k-th 

element cross-section, submatrix pkE  reads as follows: 

1
for Class (1 or 2)

1
or , .

0
for Class (3 or 4)

0

pk

diag

k K

diag

  
   
  
  
    

E

 

(9) 

If the problem (1)-(8) will have some active inequalities (2) for one and the same 

element cross-section at proper loads, such regime of plastic yielding will be 

named sign-changing. In such case we may calculate this element cross-section 

as elastic. 

Inequalities (2) generally depends on the domain ( ) F  of loading [1], checking 

of this effect may be an actual problem of Code’s future variants. 

In the formulation of problem (1)-(8) may be included not only the uncertain load, 

but any other actions, e.g. thermal or kinematic distorsions. 

Simplified linearized mathematical model  

For the shakedown problem with stiffness and linearized strength constraints 

a mathematical model will be as follows: 

 0 0 ,min f S
 

(10) 

0 ( ) ,j ej p   S S GE 0   
 

(11) 

= , ,j

j

j J 

 
(12) 

0, 0,T

j j j   
 

(13) 

p  AGE  
 

(14) 

0 0 0 ,  S S S  
(15) 

, , , ,, .min e inf r inf e sup r sup maxu u u u u u   
 

(16) 

Here idiag   is a quasi-diagonal matrix of the linear yielding conditions (10), 

i  is the matrix of coefficients of the i-th section linear yielding conditions.
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In this case of linear yield conditions (11), the residual displacements r u Hλ  

and residual internal forces r S Gλ  can be expressed by influence matrices of 

residual displacements (17) and forces (18): 

  
1

1 1 ,T


 H AD A AD Φ
 

(17) 

1 1 .T  G D A H D   
(18) 

3. MEMBER STABILITY CHECK 

3.1. Design formulae for Methods 1 and 2 for members with class 1, 2  

and 3, 4 cross-sections 

Two different formats of the interaction formulae are provided in EC3, called 

Method 1 and Method 2. The main difference between them is the kind of 

presentation of the different structural effects, either by specific coefficients in 

Method 1 or by one compact interaction facto in Method 2. This makes Method 

1 more adaptable to identifying and accounting for the structural effects, while 

Method 2 is mainly focused on the direct design of standard cases [11]. 

Both methods deal with the most complex behavior of a single span member 

subjected to combined bending and axial compression, including all possible 

interactions and non-linear effects. In Method 1 all the influences of material and 

geometrical nonlinearities and of interactions between loading components are 

reflected by separate factors. In contrast, Method 2 uses a reduced number of such 

factors as a result of globalization of several effects and calibration of the latter 

on the basis of extensive numerical simulations [11]. 

3.2. Elastic-plastic flexural buckling without lateral torsional buckling 

It is known, that steel members show linear behavior in the elastic range and non-

linear behavior in the plastic range [11,13]. 

The higher the slenderness, the lower the capacity and the less pronounced is the 

plastic behavior. This ideal material behavior is significantly affected by the 

presence of residual stresses in rolled and welded sections, which results in non-

linearities even at low load-levels. In this respect a large range of members behave 

inelastically in principle [11]. 

EC3 classifies sections to Class 1 and 2, which are defined as capable of 

developing a full plastic capacity, and sections of Class 3 and 4, which are defined  
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as elastic. Such classification is often confusing, especially if these definitions are 

applied to element behavior. 

Recent numerical simulations show that Class 3 sections also develop plastic 

capacity, so that element-behavior presumably is not or is only partially 

dependent on the class-definition. 

For the Class 3 and 4 sections, plastic capacity is not, or is only partly considered. 

That is why EC3 differentiates between the interaction formulae for “elastic-

plastic” Class 1 and 2 sections and “elastic” Class 3 and 4 sections. Because of 

that, interaction formulae for the Class 3 and 4 section follow the analytically 

derived equations for flexural buckling. 

Members not susceptible to torsional deformation fail in flexural buckling, by in-

plane or special deflection. These are closed sections or open sections 

appropriately restrained against torsional deformations, as frequently fount in 

building structures [11]. 

3.3. Axial compression and strong axis bending  yN M    

3.3.1. Members with Class 1 and 2 cross-sections 

Design formulae for the in-plane buckling mode  y y for members with Class 

1 and 2 cross-sections is as follows: 

,

, , ,

1,0
my y EdEd

y

y pl Rd pl y Rd

C MN
k

N M
 

 

(19) 

where  

 1 0,2 1 0,8y y y yk n n    
 

(20) 

is an interaction factor (Eurocode 3), determined on basis of geometrically and 

materially non-linear imperfect analyses (GMNIA) results provided by Ofner 

[28]: 

y

y pl

N
n

N


 
(21) 

is an axial compression parameter; 

0,6 0,4 0,4myC   
 

(22) 

is an uniform moment factor [11], which may differ according to the form of 

element’s moments distribution diagram. 
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3.3.2 Members with Class 3 and 4 cross-sections 

Design formulae for the in-plane buckling mode  y y for members with Class 

3 cross-sections is as follows: 

,

, , ,

1,0
my y EdEd

y

y pl Rd el y Rd

C MN
k

N M
 

 

(23) 

where 

1 0,6 1 0,6y y y yk n n   
 

(24) 

, , 1/el y Rd y y MM W f 
 

(25) 

For Class 4 cross-sections the section properties ,pl RdN  and , ,el y RdM , need to be 

replaced by the resistances calculated from the properties of the effective section 

area of cross-section effA  and effW , as follows: 

, 1/eff Rd eff y MN A f 
 

(26) 

, , , 1/el y Rd y eff y MM W f 
 

(27) 

4. EXAMPLE OF SHAKEDOWN ANALYSIS 

4.1. Discretization of the structure 

A considered three-storey TWM plane frame (Fig. 2a) is subjected to two 

independent loads: vertical live load 1F  (varying 10 80,0kN F kN  ) and 

horizontal wind load 2F  (varying 230,0 50,0 ),kN F kN    see Figure 2b. 

Members of the frame structure are designed from standard rolled IPE or HE 

cross-sections. It is assumed, that members are restrained to prevent both lateral 

and lateral torsional displacements. 

It is being assumed, that structure is designed from members of cross-sectional 

Classes 1, 2, 3 and 4. For the sake of ease, each frame member has a prescribed 

Class (Fig. 2a), which remains constant during optimization-design procedure. 

Frame members are discretized as beam-column elements subjected to strong axis 

bending and axial force. Detailed discretization procedure is described in work of 

Liepa & Karkauskas [23]. 

The task is to find an optimal solution of the problem (9)-(16) for determining 

optimal distribution of limit moments of frame at shakedown. 
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Lower bound of limit internal force 0


S  is considered as element’s limit critical 

bending moment 0, ,min
crM  [18]: 

3

1
2 1

0, 3 2
1

,

b

b
mi cr

lim

n
cr yM

L
f a

a 

 
  

   

(28) 

here yf  is characteristic yield strength of steel; crL is the buckling length of the 

compression member and it is determined according to the algorithm described in 

work of Liepa [21]; lim is limit slenderness of the member, in this paper for all 

members of the frame it is considered constant 120lim    [24]; 1 3 1 3, , ,ba a b  

are relation coefficients of cross-section geometrical characteristics [7]. 

a) b) 

 

Fig. 2. Loading scheme (a), load variation locus (b). 
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Here   a number of load combination (Fig. 2). There are four loading 

combinations in total, therefore 1, 2, 3, 4.   Then the generic loading vector has 

the following form: 

                   .1 .2 .3 .4 .5 .6 .7 .8 .9
T

F F F F F F F F F
          

 
F

 
(29) 

And for each combination one can form the following vectors: 

Then the wind load (horizontal) is from the left hand side, and combination 1 is 

formed  1, 2,sup supF F : 

                   1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
1.1 1 0.8 0.55 0.5 0.4 0.6 1 1 .

T

F F F F F F F F F 
 

F  

And combination 2  1, 2,inf supF F : 

                   2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
1.1 1 0.8 0.55 0.5 0.4 0 0 0 .

T

F F F F F F F F F 
 

F
 

Then the wind load (horizontal) is from the right hand side, and combination 3 

is formed  1, 2,sup infF F : 

             3 3.1 3.2 3.3 3.4 3.5 3.6
0.55 0.5 0.4 1.2 1 0.9F F F F F F     


F

 

     3.7 3.8 3.9
0.6 1 1 .

T

F F F 
  

And combination 4 is formed  1, 2,inf infF F : 

             4 4.1 4.2 4.3 4.4 4.5 4.6
0.55 0.5 0.4 1.2 1 0.9F F F F F F     


F

 

     4.7 4.8 4.9
0 0 0 .

T

F F F 
  

Material properties of steel are described in Table 1. 

Table 1. Material properties 

Elastic modulus 210E GPa  

Characteristic yield strength 235yf MPa   

Partial safety factors 
0

1

1,0

1,0

M

M








  

Detailed design procedure is shown in a Figure 3. 
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Fig. 3. Shakedown optimization principal scheme 

  



36 Piotr ALAWDIN, Liudas LIEPA 

 
 

4.2. Numerical results 

Optimal solution received after seven iterations (Fig. 4 and Table 2). Optimal 

limit internal forces distribution obtained when criteria of optimization reached 

value 
* 42,8936valf e . 

 
Fig. 4. Optimal solution convergence during iterations 

Initial and optimal cross-sectional values of each class are provided in Table 2. 

Table 2. Initial and optimal cross-sectional values 

In
it

ia
l 

cr
o

ss
-s

ec
ti

o
n

al
 

p
ro

p
er

ti
es

 

Class 1 Class 2 Class 3 TWM Class 4 TWM 

HE 300 B 
0 2

1

0 4

1

0 3

,1

0

01

149,1

25170,0

1869,0

261,9

pl

A cm

I cm

W cm

M kNm








 

IPE O 400 
0 2

2

0 4

2

0 3

,2

0

02

96, 4

26750,0

1502,0

260,9

pl

A cm

I cm

W cm

M kNm








 

IPE 400 
0 2

3

0 4

3

0 3

,3

0

03

84,5

23130,0

1307,0

521, 4

pl

A cm

I cm

W cm

M kNm








 

IPE A 360 
0 2

4

0 4

4

0 3

,4

0

04

54,0

14520,0

907,0

221, 2

pl

A cm

I cm

W cm

M kNm








 

O
p

ti
m

a
l 

cr
o

ss
-s

ec
ti

o
n

al
 

p
ro

p
er

ti
es

 

HE 500 B 
* 2

1

* 4

1

* 3

,1

*

01

238,6

107200,0

4815,0

807, 2

pl

A cm

I cm

W cm

M kNm








 

IPE O 450 
* 2

2

* 4

2

* 3

,2

*

02

118,0

40920,0

2046,0

283,4

pl

A cm

I cm

W cm

M kNm








 

IPE 500 
* 2

3

* 4

3

* 3

,3

*

03

116,0

48200,0

2194,0

615,5

pl

A cm

I cm

W cm

M kNm








 

IPE A 550 
* 2

4

* 4

4

* 3

,4

*

04

117,0

59980,0

2475,0

565,7

pl

A cm

I cm

W cm

M kNm








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Optimal residual internal forces  
T

r r rM NS  distribution is shown  

in a Figure 5. 

 
  
Fig. 5. Residual internal forces 

rS  distribution: moments kNm,  

and axial forces (in squares) kN 

5. CONCLUSIONS 

In this paper a new mathematical model of shakedown and optimization of thin-

walled metal plane frames, which elements are from 1st to 4th class cross-

sections, under variable repeated uncertain loads, is proposed for general 

nonlinear and simplified linearized case. Any possible mechanisms of system 
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collapse at shakedown such as plastic yielding and sign-changing ones are 

analyzed, the partial plastic redistribution of forces in such structures are found. 

The conditions of elements strength are derived according to the Eurocode 3. The 

methodology, algorithms and implementation of TWM frames weight 

optimization is presented and illustrated by numerical example. Results showed, 

that updated strength conditions could be used in an optimization mathematical 

model of frames.  

Overall structure experienced shakedown, although Class 3 and 4 elements 

where designed according to thin-wall metal cross-sections design requirements 

by EC3, preventing any residual actions occurrences by updated mathematical 

model condition (13). 

The optimal solution for the plane frame under variable repeated loading was 

obtained by solving mixed-integer optimization problem, which requires a 

choosing of cross-sections from manufacturers’ catalogue. 

Further investigation needs to be carried out taking into account the effect of 

shear forces in the frame elements, torsion and bidirectional bending moments for 

the three dimensional frames at shakedown conditions.  

A dependence of elements strength conditions on the domain of loading may 

be an actual problem for Code’s future variants. 

In the formulation of problem proposed here might be naturally included not 

only uncertain loads, but any other actions and environmental influences, material 

properties and geometrical data. 
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OPTYMALIZACJA PRZYSTOSOWANIA CIENKOŚCIENNYCH  

KONSTRUKCJI METALOWYCH PRZY OGRANICZENIACH ICH NOŚNOŚCI  

I SZTYWNOŚCI 

S t r e s z c z e n i e  

Klasyczne problemy optymalizacji konstrukcji metalowych dotyczą głównie klasy 1 

przekrojów. Jednak w rzeczywistych konstrukcjach cienkościennych często stosują się 

przekroje wyższych klas. W niniejszej pracy zaproponowano nowy model matematyczny 

dla optymalizacji przystosowania konstrukcji metalowych, w których przekroje 
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elementów odnoszą się zarówno do klasy 1 jak i do 4 łącznie, przy obciążeniach 

zmiennych quasi-statycznych. Uwzględniono możliwości ograniczonej redystrybucji sił 

resztkowych w konstrukcji z elementów cienkościennych. Autorzy zakładają sprężysto-

plastyczne wyboczenie na skutek zginania w jednej płaszczyźnie, bez wyboczenia 

bocznego na skutek skręcania. Wzory obliczeniowe według Metody 1 i 2 dla elementów 

są analizowane. Ograniczenia sztywności są również zastosowane w celu spełnienia 

wymogów stanu granicznego użytkowalności. Za pomocą teorii programowania 

matematycznego i ekstremalnych zasad stworzono algorytm optymalizacji konstrukcji i 

uzasadniono w eksperymencie numerycznym dla płaskich ram metalowych. 

Słowa kluczowe: przystosowanie, optymalizacja, programowanie matematyczne, 

metalowe konstrukcje cienkościenne, nośność, sztywność 
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