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A b s t r a c t  

The paper presents the problem of optimal shaping of the H-bar cross-section of a steel 
arch that ensures minimal mass. Nineteen combinations of nine basic load states are 
considered simultaneously in the problem formulation. The optimal shaping task is 
formulated as a control theory problem within the formal structure of the maximum 
Pontriagin’s principle. Since the ranges of constraint activity defining the control structure 
are a priori unknown and must be determined numerically, assuming the proper control 
structure plays a key role in the task solution. The main achievement of the present work 
is the determination of a solution of the multi-decision and multi-constraint optimization 
problem of the arch constituting a primary structural system of the existing building 
assuring the reduction of the structure mass up to 42%. In addition, the impact of the 
assumed state constraint value on the solution structure is examined. 

Keywords: shape optimization, optimal control, arch, multipoint boundary value 
problem  

1. INTRODUCTION 

Arches have been used in engineering practice for millennia and are still widely 
applied to large-span roof structures. Despite the rich research literature, there are 
still challenges in arch shape optimization. If properly shaped, arches are efficient 
structures that transmit loads to foundations [31] while having relatively low self-
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weight. The load-carrying efficiency is the result of the domination of axial loads 
with small eccentricity [1, 16, 30]. Additional material savings can be obtained by 
optimizing the shape of the arch while taking into account imposed constraints [4, 
10, 11, 12]. Optimal shaping of moment-free arches under the action of self-
weight and constant distributed loads can be found in [13]. The finite element 
method is used in [28] to minimize the volume of the arch with variable cross-
sectional dimensions. The analytical design criteria for the optimal shape of 
statically determinate arches with vertical loads in key sections under the 
assumption of constant normal stress are presented in [15] and [24]. Oftentimes 
the key issue is the minimization of the arch volume, since self-weight is the 
dominating vertical load, comprising about half of the total loading. Some recent 
works touch on the topic of optimal design of arches with minimal volume, while 
considering different constraints imposed on the end segments, using semi-
analytical methods [25, 26, 27], or optimal control [6]. Engineering structures, 
depending on their intended use, must meet a number of criteria, often going 
beyond safety measures. Solutions should be economical in terms of material use 
and labor costs. In optimization practice, deliberations are often limited to easily 
defined structural aspects, e.g., the most favorable cross-section shape, the axis 
curvature, or location of supports. Among many factors that affect the structure 
performance, the reduction of material consumption plays a key role. Minimizing 
the self-weight of the structure, while maintaining its function and satisfying the 
safety criteria, can positively impact the total cost of a project, especially for large 
structures. 

The formulation of optimization problems requires the creation of a 
mathematical model and the definition of state variables, control, constraint 
conditions, and an objective function. The Pontriagin’s maximum principle allows 
for the formulation of a set of necessary optimality conditions in the form of a 
multipoint boundary value problem for a set of ordinary differential equations or, 
more generally, a differential-algebraic boundary value problem [17, 18]. The 
most important steps in proper problem formulation are: choice of the objective 
function, decision variables, and necessary constraints, which can depend on state 
variables and decision variables [21,22]. The issues regarding the necessary 
optimality conditions for control problems with pure state constrains are still an 
ongoing topic of research [7, 9, 14].  

The tasks of optimal shaping of realistic civil engineering structures are 
characterized by multiple controls and constraints, as well as taking into account 
numerous load states, which results in a large number of state equations. In these 
cases, special attention must be paid to the control structure, i.e. to the appropriate 
sequence of controls obtained from different conditions. Despite a reach literature 
published in recent years on the development of arch-shaped optimization [2, 8, 
20, 23, 25], to the best authors’ knowledge these works do not include research in 
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the area of optimal control . The present work is a continuation of the research 
topic presented in [6]. The subject of the multi decision optimization is the arch 
constituting a primary structural system of the existing building (old opera house 
in Cracow, Poland), under actions of multiple load combinations and with several 
constraints imposed by appropriate design standards. Since the work focuses on 
the task of shape optimization, second-order effects such as material and 
geometrical nonlinearities, stability issues, or spatial structure work are 
disregarded in the considerations. The objective is to determine the variable cross-
section dimensions of an H-bar arch girder, under the action of self-weight and 
multiple external loads, ensuring minimal volume, as well as the fulfillment of 
standard requirements (load bearing capacity and deflection limit). The task is 
formulated as a non-autonomous control theory problem within the formal 
structure of Pontriagin’s maximum principle with state and state-control 
constraints. The multipoint problem obtained from Hamiltonian minimization is 
solved numerically by the Dircol-2.1 software [29] using the direct collocation 
method, and the optimal cross-sections are obtained together with graphs of 
internal forces and deflections. The chosen theoretical foundations of the above-
mentioned methods are presented in [19, 21]. 

The optimal solutions obtained by control theory methods for different 
assumed admissible arch deflections are independently verified by finite element 
method (FEM) computations. 

The article is organized as follows. Sect. 2 starts with the description of the 
optimized structure and load states taken into account, followed by the list of state 
equations and assumed constraints and restrictions. Then, in Sect.  3 the 
optimization task is formulated within the formal structure of the Pontriagin’s 
maximum principle. The necessary optimality conditions for the non-autonomous 
problem with state-control as well as pure state constraints are discussed in detail. 
In Sect. 4 the obtained optimal solutions are presented, and the dependence of the 
control structure on the state constraint is discussed and the benefits resulting from 
optimization are analyzed. Additionally, the fulfillment of serviceability and 
ultimate limit states by obtained optimal arch girders is verified by FEM 
computations. Section 5 concludes the article with a brief summary. 

2. DESCRIPTION OF OPTIMIZED STRUCTURE AND 
TECHNICAL ASSUMPTONS 

The optimized arch constitutes the roof girder of a hall of horizontal dimensions 
21 by 50 m, with girder spacing equal to 2.5 m. The arch is 20.754 m long, 4.255 
m high (see Fig. 1a), with the parabolic axis and the H-bar cross-section. The 
following cross-sectional dimensions are constant: the web height and flange 
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thickness (see Fig. 1b), whereas the web thickness (𝑈ଵ) and flange width (𝑈ଶ) are 
the subjects of optimization. 
 

 
Fig. 1. Arch diagram (a) and cross-section (b) 

2.1. Acting loads  
To take into account all possible load combinations, 9 basic load states are defined 
according to applicable standards [3] (Fig. 2, Table 1). Due to the large number of 
possible combinations of the basic loads listed above, in order to reduce the 
dimension of the optimization problem, the task is formulated in one characteristic 
interval. Such a formulation is possible when only distributed loads are taken into 
account.  

Table 1. Basic load states - engineering (Eng) and control theory (CT) notation 

Jumps in the intensity of a distributed load can be accounted for using 
indicator functions [12] without adding characteristic points to the mathematical 
model. Therefore, the concentrated forces are replaced by equivalent distributed 
loads. The symmetry of the structure must lead to a symmetric solution. Since the 
analyzed girder axis is symmetrical, every basic nonsymmetric load is 
complemented by its mirror image (see Table 1). 

 
 

Load 
status 

Load type 
Notation (Eng) Notation (CT) 

0 Girder dead weight 0 0 0 0 0 0, , , , ,u w M Q N   , 1, . . . , 6iy i    
1 Sheathing weight 1 1 1 1 1 1, , , , ,u w M Q N  , 7 , . . . ,1 2iy i   
2 Wind from the left – option I 2 2 2 2 2 2, , , , ,u w M Q N  , 13, ...,18iy i   
3 Wind from the left -option II 3 3 3 3 3 3, , , , ,u w M Q N  , 19, ..., 24iy i   
4 Wind from the right – option I 4 4 4 4 4 4, , , , ,u w M Q N  , 25, ..., 30iy i   
5 Wind from the right – option II 5 5 5 5 5 5, , , , ,u w M Q N  , 31, ..., 36iy i   
6 Snow- option I 6 6 6 6 6 6, , , , ,u w M Q N  , 37, ..., 42iy i   
7 Snow from the left - option II  7 7 7 7 7 7, , , , ,u w M Q N  , 43, ..., 48iy i   
8 Snow from the right – option II  8 8 8 8 8 8, , , , ,u w M Q N  , 49, ..., 54iy i   
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Fig. 2. Basic distributed load states 
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Table 2. Load configurations 

Load  
configurati

on 

Basic load status 

0 1 2 3 4 5 6 7 8 

1 + + +       
2 + +  +      
3 + +   +     
4 + +    +    
5 + +     +   
6 + +      +  
7 + +       + 
8 + + +    +   
9 + + +     +  
10 + + +      + 
11 + +  +   +   
12 + +  +    +  
13 + +  +     + 
14 + +   +  +   
15 + +   +   +  
16 + +   +    + 
17 + +    + +   
18 + +    +  +  
19 + +    +   + 

The same rule holds when defining load combinations. The basic load states 
collated in Table 1 allow for the formation of 19 load combinations: 7 
combinations of dead loads and a single environmental load (wind or snow) and 
12 combinations of dead loads and two environmental loads (wind and snow) (see 
Table 2). The combination including only dead weights (load statuses 0 and 1) is 
ignored due to its minor importance. Basic load states are implemented in the state 
equations, whereas load combinations are defined during constraint formulation.  

2.2. State equations in basic load states 
In each of the 9 basic load stages, a set of 6 equations describes the parabolic arch 
under the action of consecutive load states 
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j
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
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

 
 
 

  
    
 

 

   
  

  (2.1) 

where: 
,u w - displacements tangent and normal to the arc axis, M -  bending moment, 
,Q N - shearing and axial forces, x - independent variable (see Fig. 1a), E - 

Young’s modulus, A - cross-sectional area, J - moment of inertia,  - axis 
curvature,  - the inclination angle of the girder axis towards the x axis,  - 
rotation angle, ,p n - load components tangent and normal to the axis. It should be 
noted that the cross-sectional area of the girder, the inertia moment, and load 
components of the zeroth load state 0 0,p n depend on unknown cross-sectional 

dimensions  1U x  and  2U x . 
The girder, in all load states, is described by 54 state equations. In addition, 

the equation for the arch mass  55W y must be formulated 

  ,   0 0
cos

dW A
W

dx g




     (2.2) 

where  is the steel specific weight, g - gravitational acceleration.The state 
equations (2.1) and (2.2) are complemented by the boundary conditions, 
depending on the arch supports: 

 
       
     
0 0, 0 0, 0 0, 0 0,

0, 0, 0, 0,1,...,8.
j j j

j j j

u w M W

u l w l M l j

   
   

  (2.3) 

The state equations are expressed as differential equations of the first order 
with proper boundary conditions. This approach allows for the formulation of the 
cross-section optimal shaping task within the framework of control theory with 
application of the maximum principle.  

In classical control theory problems, time is the independent variable and 
the analyzed system is in motion. In statics issues, the concept of time loses its 
meaning, but by analogy one can take the x-coordinate of the bar axis as the 
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independent variable. This approach allows for utilizing the optimal control theory 
in structural mechanics problems.  

2.3. Constraints 
Based on the appropriate standard [3] , the following constraints are imposed on 
the solution: 

 limit of the normal stress on the bottom surface of the girder fd  

 1 d fdG f     (2.4) 

 limit of the normal stress on the top surface of the girder fg   

 2 d fgG f     (2.5) 

 limit of the complex stress state on the edge of the web fw   

 3 1.1 d fwG f     (2.6) 

 limit of the shear stress on the girder axis f   

 4 0.58 d fG f     (2.7) 

 limit of the maximal deflection z   

 5G c z    (2.8) 

where: 
df - steel design strength, c - allowable deflection. 

The stresses appearing in Eqs. (2.4)-(2.7) are determined as the extreme 
values that can occur under any of the 19 analyzed load combinations, which can 
be formulated by means of the maximum function. For example, in formula (2.4) 

  ,max ,    1, 2,...,19.fd fd i i     (2.9) 

Load combinations are defined during the formulation of constraint 
functions. According to Table 2, in Eq.(2.9) , the elements of the set  ,fd i take 

the form  

 

,1 0 1 2

,2 0 1 3

,19 0 1 5 8

....

fd d d d

fd d d d

fd d d d d

   
   

    

  
  

   

  (2.10) 

where: jd  means the normal stress on the bottom surface in the 𝑗௧௛ basic state. 
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The deflection 𝑧 in constraint (2.8) is defined as 

  1 2 19max , ,..., ,z Z Z Z   (2.11) 

where, in accordance with load combinations  

1 0 0 1 1 2 2

2 0 0 1 1 3 3

19 0 0 1 1 5 5 8 8

sin cos sin cos sin cos

sin cos sin cos sin cos

....

sin cos sin cos sin cos sin cos .

Z u w u w u w

Z u w u w u w

Z u w u w u w u w

     
     

       

     
     

       

(2.12)  

Such a notation allows for a significant reduction of the number of 
constraints in the analyzed optimization problem. Additional constraints define 
upper and lower bounds imposed on the decision variables by design, 
technological, and manufacturing requirements  

1 2:    0.05,  0.16 ,   0.005,  0.008 .k admissibleU U U U                   (2.13)  

3. FORMULATION OF THE OPTIMIZATION TASK  

Within the framework of the maximum principle, the objective is to determine 
two unknown cross-sectional dimensions  1U x  and  2U x  of the arch girder 

described by the set of equations (2.1), which provide the minimum mass, 
expressed as  

  1 2

0

,
cos

l A
W U U dx

g




    (3.1) 

under the condition that both the load carrying capacity and displacement limits 
are not exceeded under any load combination 

   min .
kU

W l   (3.2) 

This method allows for finding the solution that is optimal in mathematical 
terms and can be implemented in engineering practice. The inclusion of limits 
(2.13) imposes the physical meaning of the sought solution, excluding both zero 
and infinite cross-sections. 

3.1.  Solution method – optimization formalism 
The engineering content of the presented optimization task leads to the optimal 
control problem of the Mayer type. One must determine controllers 1U   and 2U   
that solve the following task: 
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dx

G y U s n G R R R n
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


  

       

    

   1

  (3.3) 

   0 0r ry y l   for 
1, 2, 4,7,8,10,13,14,16,19,20,22, 25, 26,28,31,32,34,37,38,40,43, 44, 46, 49,50,52r    

with the state functions  : 0, yn

iy l R and the controls  : 0, ,un
kU l R  

where: yn - number of state variables, un - number of control variables, if - right 

hand sides of differential equations, gn - number of control-state inequality 

constraints,     pn - number of pure-state inequality constraints.   

The engineering task discussed in this paper leads to an optimal control 
problem with mixed control-state inequality constraints  , 0s i kG y U   and a pure 

state inequality constraint   0p iG y  . Pure-state constraints are generally more 

difficult to deal with than mixed control-state constraints, since they do not 
explicitly depend on control  kU  and iy  can be controlled only indirectly via 
propagation through the state equations. The important feature of the above 
formulated differential-algebraic optimization problem is the fact that the decision 
variables are present not only in the differential part of the operator (2.1) but also 
in the algebraic part (right-hand sides), leading to a non-autonomous problem.  

It should be noted that the characteristic feature of structural mechanics 

tasks is the fact that conditions of initial   0iy x   and final   iy x l  states are 

specified only in part, for some state variables, contrary to most other mechanics 
optimization issues defined as two-point boundary value problems, where the 

initial   0t   and final   1t t   states are fully known. 

3.2. Necessary optimality conditions for non-autonomous problems 
Let ,  ,  i i sy f G be sectionally differentiable functions of their arguments and kU  be 
the optimal solution of system (3.3). Then there exist a vector function of adjoint 
variables  1 ,..., ,

yn    and multipliers  1 ,..., ,
gn    such, that for the 

Hamiltonian 

 
55 4

1 1
i i s s

i s

H f G 
 

       (3.4) 
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the following relations hold  

 ,    .i i

i i

d dyH H

dx y dx




 
  

 
  (3.5) 

The complete proof of the transversal conditions (3.5) can be found in [5] and 
[21]. The adjoint variables corresponding to these state variables for which no 
boundary conditions were imposed must fulfill the following relations 

    0 0p p l     (3.6) 

for 3,5,6,9,11,12,15,17,18,21,23,24,27,29,30,33,35,36,39,41,42,51,53,54.p      
If if  and H  are nonlinear functions, the Hamiltonian is regular, and the pure state 

constraints are not active  0 ,pG   then the following relation holds 

 
55 4

1 1

=0     1,2.i s
i s

i sk k k

f GH
k

U U U
 

 

 
    

      (3.7) 

Formula (3.7) allows for the determination of Lagrange multipliers s  that meet 
the following condition 

  
0  if  0

0  if  0.
s

s
s

G
x

G


 
 

  (3.8) 

In this case, the optimal control is calculated from the equation 

    1 2, 0   for   , .s i kG y U x x x    (3.9) 

It should be noted that mixed state-control inequality constraints in structural 
mechanics problems are active mostly sectionally.  

On the other hand, pure state inequality constraints are in most cases active 

only pointwise   , 0p c i cG x y x  , where cx  are called contact points. These extra 

constraints give rise to jump conditions for the adjoint variables and the 
Hamiltonian function as 

 
   

   

1

2

5

5

w c w c w
w

c c w

G
x x

y

G
H x H x

x

  



 

 


 




 



  (3.10) 

for adjoint variables w  corresponding to appropriate state variables. In the 
engineering problem discussed in this paper, the pure state constraint limits the 
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arch deflection, so jumps can appear in w  corresponding to normal and tangent 
displacements.  

In formula (3.10) 
1 2
,w w R    are Lagrange multipliers. The adjoint 

variables can be interpreted as the measure of sensitivity of the objective function 
to the change of the corresponding state variables. The necessary conditions (3.4)
-(3.9) result in the boundary value problem with interior point constraints, i.e., a 
multipoint boundary value problem.  

4. RESULTS AND DISCUSSION  

Application of the formalism of the maximum principle presented in Sections 3.1 
and 3.2 to the shape optimization problem of the steel arch leads to the multipoint 
boundary value problem built of 110 differential equations (55 state equations and 
55 conjugated equations), 2 conditions for the minimum of the Hamilton function, 
5 constrain functions, and 2 conditions for permissible controls. The problem 
dimensions are 55x55 for 110 ordinary differential equations. Since constructing 
a suitable starting approximation for the multi-shooting problem may be difficult, 
it is calculated using the direct collocation method software (Dircol) . This method 
solves a parametrized version of the optimization task leading to stable values of 
adjoint variables. Through the application of the Dircol-2.1 software [29] two non-
determined girder cross-sectional dimensions  1U x  and  2U x   are defined for 

which the objective function reaches the minimal value and the limitation state is 
not exceeded in any analytical scenario. The key role in this formulation is played 
by the structure of the control. In the analyzed problem, the control structure 
depends essentially on constraint dy c   assumed in equation (2.8). 

Adopting the allowable deflection 0.07 ,c m  which corresponds to 
1

296.5
 

of the arch span l   leads to the quality indicator   605.31 W kg  and the following 
control (Fig. 3) 

 

 
 
 
 
 

1 5 1 2

0.05 0.0,   0.472

0.472,   1.415

0.16 1.415,   19.811 0  for  4.245  and  16.509

19.811,   20.282

0.05 20.282,   20.754

opt

opt

x

U x

U x x G x x

U x

x

 
     
 



  (3.11) 
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0.008 14.622,    17.924 0  for  16.509

17
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  (3.12) 

Adoption of 0.075 c m  changes the control structure, 1U  takes the form 

(3.13) (see Fig. 3) whereas 2 0.005U    for every 0, .x l  The quality indicator 

is reduced to 527.39 W kg   
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 
 
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5 1
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   


 

  (3.13) 

 

   
Fig. 3.  Optimal solution 1U   with the active constraint 5 0.G   

Further increasing the allowable deflection leads to subsequent changes in 
the control structure, resulting in the activation of stress constraint 2 0G    (see 
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Equation (2.5)).  For c  ranging from 0.08  to 0.12 m  two constraints  2G  and 5G  
are active simultaneously (see Fig. 4). For 0.09 c m  this structure takes the form 

  
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 
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
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  (3.14) 

with accompanied arch mass 438.37 .W kg   

 
Fig. 4.  Optimal solutions 1U  with active constraints 2 0G   as well as 5 0.G   

For 0.125 c m  the constraint 5G  is no longer active, resulting in the steady control 
structure (see Fig. 5 and Table 3) given by the formula 
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    
   
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  (3.15) 

The mass of the optimal arc in this case is reduced to 353.66 W kg . 
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Fig. 5.  Optimal solutions 1U  with the active constraint 2 0.G   

The comparison of the optimal solution 1U  in all discussed cases is presented in 
Fig. 6.  

 
Fig. 6. Summary of optimal solutions 1U  for different values of c  

Table 3 and Fig. 7 show the ranges of activity of the constraints and values of the 
corresponding quality indicators.   
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Table 3. Optimization results for different permissible deflections .c  

𝒄[𝒎] 𝑾[𝒌𝒈] 𝑮𝟐 = 𝟎 𝑮𝟓 = 𝟎 
0.07 605.31 - 𝑥ଵ = 4.245, 𝑥ଶ = 16.509 

0.075 527.39 - 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 
0.08 488.33 𝑥ଵ = 0.847, 𝑥ଶ = 19.907 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 
0.09 438.37 𝑥 ∈ (0.847 − 1.694), (19.060, 19.907) 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 

0.096 417.49 𝑥 ∈ (0.847 − 2.118), (18.636, 19.907) 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 
0.1 405.68 𝑥 ∈ (0.847 − 2.541), (18.213, 19.907) 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 

0.11 381.03 𝑥 ∈ (0.847 − 2.965), (17.789, 19.907) 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 
0.12 362.27 𝑥 ∈ (0.847 − 3.812), (16.942, 19.907) 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 

0.125 354.79 𝑥 ∈ (0.847 − 6.353), (14.401, 19.907) 𝑥ଵ = 4.236, 𝑥ଶ = 16.518 
0.13 354.66 𝑥 ∈ (0.847 − 6.777), (13.977, 19.907) - 
0.15 354.66 𝑥 ∈ (0.847 − 6.777), (13.977, 19.907) - 

 

 
Fig. 7. Activeness of constraints 2 0G   and 5 0G  in terms of c  

To verify the results of the optimization procedure, the FEM models of the 
arch with the above presented optimal cross-sections are built and analyzed in the 
Abaqus software, checking for both ultimate and serviceability limit states under 
the action of all 19 load combinations. The arch FEM model is constructed from 
200 linear Euler-Bernoulli beam elements, to adjust the beam model to the 
conditions accounted for in the optimization problem. The stress and deflection 
envelopes (gathered from all load combinations) for the initial (constant) and 
chosen optimal cross-sections are presented in Figs 8 and 9. It can be seen that all 
constraints (2.4)-(2.8)  imposed on stresses and deflections are satisfied for all 
optimal arches. 
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Fig. 8. Stress envelopes for arches with constant (initial) and optimal cross-sections 

 
Fig. 9. Deflection envelopes for arches with constant (initial) and optimal cross-sections 

together with allowable deflections 

4.1. Discussion  
Optimal control problems with state inequality constraints frequently arise in 
practical applications. These problems are notoriously hard to solve and even the 
theory is ambiguous, since there exist various forms of necessary conditions of 
optimality. 

 The main benefit from the application of this indirect method is its high 
accuracy (obtained optimality tolerance equals 10-6 and nonlinear feasibility 
tolerance equals 10-5), which is unattainable in direct methods.  

Computations in Dircol 2.1 must be preceded by introducing initial values 
of the state variables, which are automatically corrected in subsequent iterations 
until the final solution, fulfilling the necessary optimality conditions, is 
determined. The activeness of the constrains is presented in Fig. 7. The obtained 
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results fulfill all the necessary optimality conditions, the boundary conditions, and 
the imposed constraints. The dependence of the quality indicator on the allowable 
deflection c  is presented in Fig. 10. The benefits arising from the optimization 
process, measured by the reduction of the structure mass, amount to 42%.  

 
Fig. 10. Quality indicator in terms of c  

Particularly important is the assumption of the proper control structure. 
Dircol software helps to define the control structure leading to a convergent 
solution of the multipoint boundary value problem, fulfilling all necessary 
optimality conditions.  

Analysis of the course of variability of adjoint variables allows for 
identifying the least favorable load combinations that lead to constraint activation. 
Jumps in these graphs indicate points at which the deflection constraint is active. 
For instance for allowable deflection 0.09 c m  two symmetrical load 
combinations 10 and 15 activate this serviceability limit state at points

1 4.236 x m and 2 16.518 x m accordingly. Figs. 11 and 12 show the 
displacements and the corresponding adjoint variables for the 7th and 8th basic load 
states. Analogical jumps appear in displacement-related adjoint variables for the 
0th, 1st, and 2nd basic load states at point 1x  and for the 0th, 1st, and 4th basic load 

states at point 2 ,x  since these states build combinations 10 and 15 (see Table 2) . 
Fig. 13 presents the objective function and the Hamiltonian for this permissible 
deflection value.  

The optimal solution fulfils all the formal requirements and the necessary 
optimality conditions. However, it should be noted that there is no guarantee that 
the determined configuration constitutes the global minimum.  
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Fig. 11. State variables 43 44,  y y (displacements under the 7th basic load) with 

corresponding adjoint variables for 0.09.c   
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Fig. 12. State variables 49 50,y y  (displacements under the 8th basic load) with 

corresponding adjoint variables for 0.09.c   

  
Fig. 13. The objective function and the Hamiltonian for 0.09 .c m  
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5. CONCLUSIONS  

 
Calculations based on the maximum principle allowed for the determination of 
the cross-sectional dimensions of the arch steel girder whose mass proved to be 
much smaller than that resulting from conventional calculations (material savings 
amount up to 42 %). However, taking into account the relation of material savings 
to associated probable labor costs, it must be concluded that for such slender 
elements the material savings may not be significant enough.  

The advantage of this method is that the optimal solution fulfilling the 
assumed ultimate and serviceability limit states can be determined for many load 
combinations in any analytical scenario.  
Essential effects of this work: 

 determination of the optimal control structure that ensures the 
convergence of the optimization process for this multi-decision and multi-
constraint problem; 

 using the maximum function while formulating constraints for multiple 
load states, significantly reducing their number; 

 verification of the activity of constraints for optimal solutions by FEM 
calculations, which confirms that optimal arches fulfill the requirements 
imposed by design standards; 

 numerical solution of a multipoint boundary value problem (MPBVP) of 
large dimensions (110 differential equations) . The dimension of MBBVP 
is an indicator of the complexity of the problem; 

 analysis of the impact of the permissible deflection constraint on the 
optimal solution structure.  

The achieved solution confirms that optimal control theory can be successfully 
applied to optimal shaping of engineering structures. Such solutions can be 
employed in engineering practice or constitute a measure of design effectiveness. 
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