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A b s t r a c t  

Due to the difficulties in implementing other methods of removing organic compounds 

and nitrogen from wastewater, municipal wastewater treatment plants use classical 

processes (nitrification and denitrification) that require large energy expenditure on 

aeration. The problem of high energy consumption concerns every treatment plant using 

aerobic activated sludge, hence the constant attempts to introduce possibly intelligent 

aeration control techniques. In this study, a short-term (hourly) forecast of oxygen 

concentration in the aeration chamber was calculated under the conditions of changing 

values of wastewater flow and pollutant concentrations as well as active aeration control 

according to an unchanging algorithm. Artificial neural networks were used to calculate 

the forecast. It is shown that an accurate prediction can be obtained by using different sets 

of input data but depending on what data we choose, the neural network required to obtain 

a good result has a more or less complex structure. The resulting prediction can be applied 

as part of a system for detecting abnormal situations and for preventing excessive energy 

consumption through unnecessary over-oxygenation of activated sludge.  
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1. INTRODUCTION 

One of the aspects of the idea of sustainable development is care for the natural 

environment. In practice, this means the necessity to build and operate sewage 

treatment plants wherever there are human clusters [2]. For example, in Poland, 

according to the latest available data of the Polish Central Statistical Office 

("Statistics Poland"), in 2020 the number of all municipal wastewater treatment 

plants was 3,281 [4]. 

Due to the type of wastewater treatment methods and related processes 

used, wastewater treatment plants are divided into: mechanical, chemical, 

biological and biological with increased removal of nutrients. In 2019, the largest 

number of municipal wastewater treatment plants in Poland used biological 

methods of wastewater treatment (75%). Plants enabling increased removal of 

nutrients were 25% [4]. 

Biological wastewater treatment plants most often use the activated sludge 

process. This is an aerobic process, which means that oxygen must be supplied to 

the biological reactor, usually in the form of air pumped into the fine-bubble 

diffusers, or alternatively by means of surface aerators. Aeration of the contents 

of a biological reactor is usually a process that consumes a lot of electricity. The 

percentage contribution of aeration to the total energy consumption of a 

wastewater treatment plant varies depending on technological and operational 

conditions. It is often reported that the contribution is about 50% or more [12]. 

Oxygen supplied to the biological reactor is consumed by activated sludge in two 

processes: aerobic growth of microorganisms connected with biodegradation of 

organic pollutants present in sewage, and in the process of nitrification. The 

specific oxygen consumption of activated sludge in the process of growth and 

biodegradation of carbon compounds depends mainly on the temperature and 

sludge age, and ranges from about 1 kg O2/kg BOD to about 1.3 kg O2/kg BOD. 

Oxygen consumption in the nitrification process is assumed to be 4.3 kg O2/kg N 

[0]. If one assumes that the ratio of BOD/N loads in the effluent flowing into the 

biological reactor is about 5 (this is a typical value), it turns out that nitrification 

consumes about 36% of the total oxygen. In practice, full removal of nitrogen is 

usually applied, i.e. in addition to nitrification, denitrification is used, which 

results in partial "recovery" of oxygen, and then the nitrogen removal process as 

a whole does not consume it as much. An alternative to nitrification / 

denitrification process for nitrogen removal that requires less oxygen is the 

Anammox process (anaerobic ammonium oxidation) which was envisioned as 

early as 1941, but it was not until the nineties that a group of bacteria capable of 

carrying out this process was identified at Delft University [11]. Unfortunately, 

due to the fact that Anammox bacteria are slow growing with a doubling time of 

11-20 days [15] it is very difficult to conduct this process in the main activated 
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sludge reactor but nitrogen removal from leachate after digested sludge 

dewatering is more commonly used [1, 10, 9]. 

Faced with the difficulty of implementing other means of removing organic 

compounds and nitrogen from wastewater, municipal wastewater treatment plants 

use classical processes that require high energy input for aeration. The problem of 

high energy consumption applies to essentially every plant using activated sludge, 

hence the constant attempts to introduce possibly intelligent aeration control 

techniques. There are different strategies to improve control: some are based on a 

mathematical model of the aeration process [12, 13], others (mostly the newer 

ones) use artificial intelligence techniques to build specific control algorithms [5]. 

The application of artificial neural networks in the calculation of complex 

phenomena, such as activated sludge process, requires a large amount of data at 

the stage of network training. Obtaining this data from the measurement devices 

of the treatment plant is not always easy. Hence, the mathematical model of 

wastewater treatment plant with activated sludge BSM1 created as a standardized 

platform for process studies and control strategies is eagerly used [1]. 

2. METHODOLOGY 

There are many types of artificial neural networks, which differ in their internal 

structure - the way neurons are connected and their number or number of layers - 

and in their training methods. In this study, it was decided to use a layered network 

whose structure is dynamically extended during the training process (cascade 

training). During training, additional neurons are added, each of which forms 

another layer of the network, so that successive layers consist of only one neuron, 

but there are many layers. An example of such a network is shown in Figure 1 

below. 

 
Fig. 1. Simplified diagram of the artificial neural network obtained by cascade training 
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Cascade training, during which a network structure is built, has the 

advantage that the size of the network does not need to be determined before 

training begins. This is important because, to date, it has not been possible to 

formulate an exact recipe for the selection of the network size. As a result, the 

number of layers and the number of neurons in each layer are selected on the basis 

of some fuzzy rules, one's own experience or directly by trial and error. 

In the present work, cascade training was used not only to obtain neural 

networks that fulfil their purpose but also as a method to determine the required 

network size. The size of the network in this case should be considered to be not 

only the number of neurons but also the number of connections. 

 

A neural network tasked with correctly reflecting complex and often 

unknown relationships between input and output data during training usually 

requires the presentation of a large number of sample sets of inputs and outputs. 

In the present work, the task of the neural network is to calculate a prediction of 

the oxygen concentration in the aeration chamber based on readings of 

measurement probes measuring concentrations and flows elsewhere in the plant. 

It was decided to use a dynamic computer simulation as a data source for two 

reasons. The first reason is that, using the BSM1 mathematical model, which is 

widely recognised and described in the literature, we obtain data widely 

recognised as valuable material for any analysis of the activated sludge process. 

The second reason is that it is relatively easy to obtain the large amount of input 

data necessary for the neural network training process.  

Figure 2 below shows the technological scheme of the biological 

wastewater treatment plant with activated sludge adopted in the BSM1 model. The 

blue colour indicates the segment of the nitrification zone where the neural 

network is to calculate the oxygen concentration. 

 
Fig.  2. Process diagram: Benchmark Simulation Model no. 1 (BSM1). Prepared by IWA 

Taskgroup on Benchmarking of Control Strategies for WWTPs 
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The "STOAT" application was selected for the computer simulation, the 

compatibility of which with the BSM1 model is described in [14]. A characteristic 

feature of the program is the possibility of using both models based on COD 

measurements (ASM1, ASM2d, ASM3) and BOD (ASAL1 ... 5). Models from 

the ASM family are widely used and considered the best for mathematical 

modeling of the activated sludge process, but their common disadvantage is the 

need to know the wastewater flowing into the treatment plant, which goes far 

beyond the set of typically performed measurements (BOD5, COD, suspension 

concentration, nitrogen and phosphorus concentration). ASAL models use a 

typical set of measurements of pollutant concentrations and indicators as input 

data, but due to the success of ASM models, work on them has not been continued 

for a long time and some aspects of calculations using ASAL models require 

improvement, especially when combining activated sludge processes with 

methane fermentation of sludge [14]. 

The BSM1 model is a set consisting of: 

- ASM1 mathematical model, 

- input data describing the wastewater flow rate and the concentration of pollutants 

in these wastewater broken down into fractions in accordance with the 

requirements of the ASM1 model, 

- a detailed description of the plant's technological layout: size and purpose of the 

facilities, connection method (flows and recirculation) and control. 

 

The specific implementations of the ASM1 model from different software 

vendors may differ slightly and therefore STOAT offers a special version of 

ASM1 tested and agreed with the BSM1 programmers' working group [14]. 

 

Teaching neural networks was carried out using the "FannTool" tool - a 

graphical interface to the popular software library implementing the process of 

learning neural networks - FANN [0, 8]. 

Computer simulation of wastewater treatment plants using the BSM1 

model allows obtaining even more detailed information about the process flow 

than is practically possible, because only some of the data available in the 

computer simulation can be easily measured online. For example, as a result of 

the simulation, we obtain information about COD in any place of the installation. 

Although there are automatic COD analyzers, they do not perform measurements 

as quickly and often as measurement probes that measure the concentration of, for 

example, oxygen or nitrogen. In this paper it is assumed that all information about 

the process, which is calculated by the simulator, but in practice cannot be 

obtained online or it is difficult - will be ignored - the neural network will not use 

this data for training. 
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The instantaneous values of all state variables are the result of processes 

occurring in the more and more distant past. Therefore, it makes no sense to expect 

that the neural network will be able to correctly calculate the value of the oxygen 

concentration in the reactor only from the values of the measurements carried out 

at the same time. The input data set should include not only current measurements, 

but also several measurements from the immediate past. 

3. RESEARCH RESULTS 

The study aimed to obtain a neural network capable of calculating a short-term 

prediction of the oxygen concentration in the aeration chamber labelled Section 5 

in Fig. 2. In the BSM1 model, it was assumed that nitrification chambers 3 and 4 

would have unchanged aeration and that air volume control would be only in 

Section 5. It is easy to guess that with a relatively constant activated sludge 

concentration, the oxygen concentration in Section 5 depends mainly on the 

instantaneous loads: BOD5 and nitrogen flowing into the reactor and the intensity 

of aeration. Hence, the following set was chosen as input data for the tests: 

Table 1. Set of measurements to be considered as possible training data for the neural 

network 

No.  Place of measurement Type of measurement 

1 Influent Flow (m3/h) 

2 Influent Total COD (mgO2/dm3) 

3 Influent Ammonia (mg/dm3) 

4 Section 3 Dissolved oxygen (mgO2/dm3) 

5 Section 4 Dissolved oxygen (mgO2/dm3) 

6 Section 5 Dissolved oxygen (mgO2/dm3) 

7 Section 5 Nitrate (mgN/dm3) 

8 Section 5 Ammonia (mgN/dm3) 

9 Section 5 KLa (1/h) 

 

The KLa value represents the capacity of the aeration system in practice. 

Stating this capacity in such units is typical of ASM mathematical models. It can 

be considered that for a specific aeration system and weather conditions there is a 

strong relationship between the KLa value and the amount of oxygen delivered to 

the reactor. Providing KLa makes the units used independent of the quality and 

degree of wear of the diffusers and other aeration system components. 

Using a computer simulation, 8065 rows of data were generated, each of 

which was staggered in relation to the next by 15 minutes (the simulation lasted 

84d). Thus, data were obtained where, for each row, there was information about 

the current state, past states (previous rows) and future states (next rows). Hence, 
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it was possible to calculate a 'forecast' of the oxygen concentration as the average 

value of the four measurements following the 'present' measurement. This 

particular forecast was the value that was fed to the neural network during learning 

along with the other data, but during the 'stand-alone' calculations the neural 

network was tasked with calculating this forecast without knowing its value. 

The values listed in Table 1 were used as input data. These were the 'present' 

time data and a number of previous row data, i.e. historical data. The number of 

previous rows used as input to the neural network varied for the different tests and 

ranged from 4 to 14. 

The different tests also differed in the subset of data - not all the data listed 

in Table 1 were always used as input to the network. This means that richer or less 

rich sets of information were tested, from which the forecast was calculated. 

Moreover, more or less historical data was used.  

Each test consisted of training three neural networks based on the same 

data. Each of the three networks then performed forecast calculations on data not 

used during the training phase. The results of the calculations were averaged and 

MSE and MAE were calculated as measures of the quality of the resulting 

forecast. 

 

As a result of the many tests carried out, it has become apparent that the 

best results are obtained using the data set shown in Table 2. 

 

Table 2. The input data set for which the most accurate oxygen concentration forecast 

was obtained 

No.  Place of measurement Type of measurement 

1 Influent Flow (m3/h) 

2 Influent Ammonia (mg/dm3) 

3 Section 5 Dissolved oxygen (mgO2/dm3) 

4 Section 5 Nitrate (mgN/dm3) 

5 Section 5 Ammonia (mgN/dm3) 

6 Section 5 KLa (1/h) 

 

As previously mentioned, the task of the neural network was to calculate the 

oxygen concentration forecast as an average value over the next hour (an average 

of 4 measurements taken every 15 minutes each). Each forecast was in this case 

calculated based on the current state and 9 previous states making a total of 60 

inputs. This automatically means that the input layer size of the neural network 

was also 60 neurons. 
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The figures below show an example excerpt of the calculation results, 

indicating the correct forecast (solid line, 'Desired'), the forecast calculated by the 

neural network ('Calculated') and the calculation error. 

 
Fig.  3. Example 1: Results of neural network calculations - oxygen concentration 

forecast values  

 

 
Fig.  4. Example 2: Results of neural network calculations - oxygen concentration 

forecast values  

For the data set shown in Table 2, a number of tests were carried out to 

determine what amount of 'historical' data is needed to get the best possible result 

600 620 640 660 680 700 720 740 760 780 800

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Calculated Desired Absolute Error

Elapsed time

O
x
y
g

e
n

 c
o

n
c
e

n
tr

a
ti
o

n
 f
o

re
c
a

s
t,
 m

g
O
₂

/d
m

³

400 410 420 430 440 450 460 470 480 490 500

0,0

0,5

1,0

1,5

2,0

2,5

3,0

Calculated Desired Absolute Error

Elapsed time

O
x
y
g

e
n

 c
o

n
c
e

n
tr

a
ti
o

n
 f
o

re
c
a

s
t,
 m

g
O
₂

/d
m

³



436 Lesław PŁONKA 

 
 

from the neural network calculations. A summary of the test results is shown in 

Table 3. 

The MSE and MAE error values are calculated for each test separately and 

then also calculated for the averaged calculation results of the three neural 

networks. It can be seen that if we perform three tests for three different, separately 

trained neural networks and average the results of the calculations of these 

networks then the result obtained will have a smaller error than if the calculations 

were performed by a single network. 

Due to the high accuracy of the results obtained, a limit on the number of 

hidden neurons was set at 10. The results presented in Table 3 show that there is 

no need to increase the number of historical data beyond 9 measurements (this 

corresponds to 135 minutes).  

Table 3. Test results of neural networks calculating oxygen concentration prediction. 

The value 'H' indicates the number of 'historical' data rows, for example H=5 for six data 

rows: the current row and five previous measurements 

‘H’ 

value 
Network 

Num-

ber of 

inputs 

Num-

ber of 

layers 

Total 

neurons 

and biases 

Total 

connec-

tions 

MSE MAE 

5 

1 36 10 48 462 0,00291 0,03970 

2 36 10 48 462 0,00244 0,03669 

3 36 10 48 462 0,00298 0,04076 

avg(1,2,3)     0,00197 0,0328 

7 

1 48 10 60 594 0,00309 0,03985 

2 48 10 60 594 0,00245 0,03631 

3 48 10 60 594 0,00263 0,03726 

avg(1,2,3)     0,00192 0,03201 

9 

(the 

best) 

1 60 10 72 726 0,00231 0,03542 

2 60 10 72 726 0,00260 0,03834 

3 60 10 72 726 0,00193 0,03239 

avg(1,2,3)     0,00149 0,02882 

11 

1 72 10 84 858 0,00229 0,03614 

2 72 10 84 858 0,00259 0,03778 

3 72 10 84 858 0,00212 0,03364 

avg(1,2,3)     0,00155 0,02924 

13 

1 84 10 96 990 0,00227 0,03420 

2 84 10 96 990 0,00325 0,04066 

3 84 10 96 990 0,00320 0,04061 

avg(1,2,3)     0,00174 0,03037 

15 

1 96 10 108 1122 0,00359 0,04287 

2 96 10 108 1122 0,00380 0,04476 

3 96 10 108 1122 0,00269 0,03710 

avg(1,2,3)     0,00185 0,03127 
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It is theoretically possible to increase the accuracy of the calculation by 

removing the size constraint of the neural network. Table 4 shows an example 

result of such a calculation for the most promising input data set. 

Table 4. Test results of neural networks calculating oxygen concentration prediction. 

Automatic determination of the network size, without the limitation of 10 neurons in the 

hidden layers. The value 'H' indicates the number of 'historical' data rows, for example 

H=9 for 10 data rows: the current row and 9 previous measurements 

‘H’ 

value 
Network 

Num-

ber of 

inputs 

Num-

ber of 

layers 

Total 

neurons 

and biases 

Total 

connec-

tions 

MSE MAE 

9 

(the 

best) 

1 60 15 77 1096 0,00053 0,01739 

2 60 20 82 1491 0,00044 0,01541 

3 60 16 78 1173 0,00043 0,01543 

avg(1,2,3)     0,00029 0,01259 

4. CONCLUSIONS 

A series of tests was performed to obtain artificial neural networks capable of 

calculating the forecast of the average value of oxygen concentration for the next 

hour (average value of four measurements performed every 15 minutes). The tests 

were performed with the use of a cascade algorithm, which selects the internal 

structure of the network itself (the number of neurons) in such a way as to obtain 

the lowest possible calculation error (MSE). Initially, the tests differed in the data 

set - various subsets were selected from Table 1. For the best set (Table 2), it was 

additionally determined how much historical data is needed to obtain the best 

possible result (Table 3). The obtained neural networks each time automatically 

took the size of 10 neurons in hidden layers, because due to the high accuracy of 

calculations, it was decided to limit the size of the network. Tests have also been 

conducted without this limitation. The results show the possibility of an additional 

increase in the accuracy of calculations, but the size of the network, despite the 

lack of limitation, did not increase above 82 neurons and biases. 

From the research carried out, it appears that obtaining a good prediction of 

oxygen concentration should be a fairly easy task. This is important because the 

training of the neural network carrying out such a task should be repeated over 

and over again in such a way that the network is learned on the current data. It 

should be noted that the forecast results depend on the adopted aeration control 

algorithm (they adapt to this algorithm in a way). Thus, if the treatment plant 

operator finds that it is worth correcting the algorithm based on the forecast, it will 

also be necessary to update the neural network structure on an ongoing basis. Tests 

carried out show that different network configurations and different input data 

configurations produce decent computational results and there is a clear chance 
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that reprogramming the neural network can take place without human supervision, 

automatically. 

Concluding on the results obtained, it can be said that the use of artificial 

neural networks to improve aeration control and thus reduce the energy 

consumption of the plant - is possible. 
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